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Foreword 

 

 

 

This conference is the sixth in a series of conferences on undergraduate teaching and learning 

in mathematics and statistics. It is the first time a DELTA conference is held in South 

America, and so it marks a milestone for the DELTA community.  

 

The DELTA conference series started in Brisbane, Australia in 1997. The DELTA 

community grew since then to include members from all parts of the world. This was 

reflected in an internationalisation of the DELTA conferences which have since 1997 been 

held  in various countries in the Southern Hemisphere: near the Great Barrier Reef in 1999, at 

the Kruger National Park (South Africa) in 2001,  in Queenstown  (New Zealand) in 2003 and 

in  Fraser Island (Queensland) in 2005. With Calafate DELTA 07, all continents in the 

Southern Hemisphere have now been covered, giving true meaning to the title of these 

conferences. 

 

Continuing with the original Delta concept to encompass the constant change that takes place 

in undergraduate education, the theme of Delta’07 is “Vision and Change for a new century”. 

The program covers almost the whole spectrum of current issues related to providing a 

meaningful undergraduate mathematics education tailored to the needs of the 21st century, 

and we hope that, following the DELTA tradition, this conference makes a significant 

contribution to mathematics and statistics teaching and learning at undergraduate level. 

 

The conference has two publications: a special issue of the International Journal of 

Mathematical Education in Science and Technology, and this Proceedings book which 

includes refereed and non-refereed papers. The refereed papers published in this book have 

undergone a rigorous blind reviewing by at least two peers from an international team of 

referees.  

 

We hope that you will find many opportunities to interact with the delegates from all 

continents, to discuss ideas and to form new ones.  We also wish you a pleasant stay in the 

surrounding of magnificent sceneries of Patagonia. 

 

Finally, we would like to thank the reviewers and the International Committee for their 

selfless and valuable contribution to putting together the program for another DELTA 

chapter. 
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Visual Proofs: Images for Understanding 

CLAUDI ALSINA* 
Universitat Politècnica de Catalunya 

 
The aim of this paper is to describe how proofs without words give opportunities for a better understanding of 
mathematics in the classroom. 
   
Keywords: Visual thinking, proofs, mathematical visualization 
2000 Mathematical Subject Classification: 97U80, 97C90 
 

1 Introduction 

 For many years the so-called “proofs without words” have been published in 
Mathematics Magazine and The College Mathematics Journal as well as in other publications 
and webs (see e.g. [1], [2]). This author and Roger B. Nelsen have been making for a long 
time research seminars on how the use of these visual proofs could play a role in a better 
understanding of mathematical concepts. As a result of our collaboration we have been 
publishing also in [3] a full description of how to produce these visual proofs for the basic 
topics arising in undergraduate mathematics.  

This paper sums up some conclusions on the problems and benefits of using visual proofs in 
the teaching of mathematics. 

2 On mathematical images and visual thinking 

 Mathematics has always combined words, numbers, diagrams, real objects hands-on-
materials, etc. for its presentation ([4]). For teaching purposes, images help to develop visual 
thinking so they open new possibilities for a better understanding of geometrical, 
arithmetical, algebraic or functional developments. For example, for George Pólya 
mathematical problem solving was often best done beginning with a visual representation.   

For either learning mathematics or for doing mathematical research, it is clear that attention 
must be devoted to the development of visual thinking. In the heuristic of mathematical 
discovery, internal visualization plays a major role and, in some cases, this process may be 
the keystone of new research. 

According to Rudolf Arnheim, visual thinking is “an active exploration, selection, grasping 
of essentials, simplification, abstraction, analysis and synthesis, completion, correction, 
comparison, problem solving, as well as combining, separating, putting in context,…”, i.e., 
visual thinking is a powerful tool which can be applied in many situations.  

In [5] we find Senechal’s definition of visualization and its relationship to the general 
framework of visual thinking: visualization is any process producing images (pictures, 
objects, graphs, diagrams,. . . ) in the service of developing visual thinking. 

3 Visualization in the classroom 

Historically, visualization in the classroom has occurred with pencil on paper or with 
chalk on the blackboard. While this practice may be changing with more and more students 
having access to computers and graphing calculators, the traditional methods may never 
completely disappear. 
                                                 
* Corresponding author. Email: claudio.alsina@upc.edu 
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Technology opens new possibilities to visual experiences, from the modest superposition of 
transparencies on an overhead projector to the latest software (Cabri IITM, Cabri 3DTM, 
Geometer’s Sketchpad®, Cinderella, Mathematica®, Maple®, DeriveTM, Matlab®, Geobra) 
which can be used to make precise drawings by computer and to project them on a screen. 
Internet resources also provide a large collection of high quality pictures which can be used 
in the classroom. 

Beyond the tools used for visualization, from ordinary chalk to the latest software, 
visualization in the classroom has its own pedagogical values [6]. 

At the outset, visualization may be a tool to develop intuition, to start solving a problem or a 
natural way to identify concepts. But it also deserves a central role in the important task of 
creating proofs. 

Proof, for the mathematician, is an essential component of research, but proofs in the 
classrooms may have the added value of explaining the properties under consideration. 
Recently G. Hanna and H. N. Jahnke [7] wrote the following: 

Clearly, an explanatory proof in school mathematics, as in any other context, must be 
one that not only demonstrates the truth of its assertions, but also helps one 
understand why the assertions are true. The aim of such a proof is always to bring to 
light underlying relationships that place its assertions in a broader mathematical 
context. In the classroom, however, an explanatory proof must rely upon the more 
limited mathematical knowledge of students and make use of the properties of objects 
best known to them. 

Proofs and the act of proving have also been shown to be of great pedagogical value insofar 
as they aid students to gain a better understanding of mathematics. Therefore, the key issues 
are how to construct appropriate exercises involving proof in the classroom at all levels (for 
appropriate topics) and how to avoid unnecessary formalism and rigidity of presentation that 
may squelch learners’ interest in mathematics. 

4 Proofs without words 

To produce proofs based upon visual descriptions we can combine hands-on materials 
and drawings. 

To experiment with hands-on materials opens new possibilities for observing how 
mathematical facts appear in reality. 

Following De Villiers (see [3]) we can consider experimentation as comprising non-
deductive methods including intuitive, inductive or analogical reasoning. Its important 
aspects are: 

• conjecturing (looking for an inductive pattern, generalization,. . . ; 

• verification (obtaining with certainty the truth or validity of a statement or 
conjecture); 

• global refutation (disproving a false statement by generating a counterexample); 

• heuristic refutation (reformulating, refining or polishing a statement by means of 
local counterexamples); 

• understanding (the meaning of a proposition, concept or definition or assisting with 
the discovery of a proof). 
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These considerations make it clear that experimentation is important in mathematics and that 
it plays a significant role in learning. 

For example in the following pictures we can appreciate how soap films describe minimal 
surfaces (figure 1); how different conic sections appear as sections of cylinders and cones 
(figure 2); how Galton’s machine shows the binomial distribution (figure 3) or how a parallel 
line with a given slope in the plane may form an interesting helix in a cylinder (figure 4). 

          
Figure 1     Figure 2 

 

 

                 
                                      Figure 3                 Figure 4 

 

 

Concerning drawings we have identified in [3] some fruitful methods for producing visual 
proofs: 

• Representing numbers by graphical elements 

• Representing numbers by lengths of segments 

• Representing numbers by areas of plane figures 

• Representing numbers by value of objects 

• Identifying key elements in a figure 

• Employing isometries for transforming a figure 

• Using similarities for transforming a figure 

• Using area-preserving transformations 

• Making planar development of 3D figures 
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• Creating tilings with double geometrical patterns 

• Combining several copies of a figure 

• Making sequential frames 

• Making dissections and moving puzzles 

• Moving frames along functional graphs 

• Using interactive generation of figures 

• Introducing colors in tilings 

• Visualizing by inclusions of one figure into another 

and of course, using hands-on materials and combining all the above resources. 

As examples we give here four interesting images 

            
Figure 5      Figure 6 

          
Figure 7                   Figure 8 

 

Figures 5 and 6 show, respectively, the sinus theorem 1· sin 1· ·sinb aα β=  and the classical 
Fubini’s principle on how to count in two ways (1+3+5… or n2). In figure 7 and 8 we follow 
Miguel de Guzmán to present how to see the Lipschitz condition and the uniform continuity 
of a real function. 

5 A teaching research 

 This author has been applying this visual approach to proofs with his undergraduate 
students of mathematics and architecture and has been giving seminars to teachers in various 
places of Spain and Argentina. In general, at the beginning of applying visualization students 
and teachers are surprised because they have been trained for following formal proofs, most 
of them involving algebraic manipulations. But after a series of good examples they begin to 
find their own ways of finding proofs. A deeper understanding of properties has been 
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appreciated. And this has contributed to a more creative approach for learning and teaching 
mathematics.  
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Modelling and applications: approaches, processes and 
competencies in mathematics courses for engineering 

students 

MARTA ANAYA*† and MARÍA INÉS CAVALLARO ‡ 
†Facultad de Ingeniería, Universidad de Buenos Aires 

‡Universidad Tecnológica Nacional 
 
In this work, we will present theoretical results related to the processes and competencies of engineering 
students at university level when they attempt to solve a mathematical problem associated to a real situation. 
Four different approaches to mathematical modelling and applications will be considered within the context of 
the mathematical classroom.  
Benefits and drawbacks will be mentioned in reference to the processes that take place and the competencies 
that the students are able to develop with each approach. 
 
Keywords: Mathematical modelling, application, processes, competencies, motivating example, difficulties. 

1. Introduction 

The teaching of applications and modelling in mathematics courses may be oriented 
to consider applications and modelling as a means to facilitate and support the students’ 
learning of mathematics as a subject, and conversely, to consider the learning of mathematics 
as a means to further a basic competency for applying mathematics and building 
mathematical models '[1]'. 

According to [1], in modelling activities, the related question is which mathematics will be an 
aid for the posed real world problem. Instead, in applications, the question is which real 
world problem will be solved with the taught mathematics. In the former, the model is 
constructed and the mathematical techniques have to be identified. In the latter, the model is 
given and the mathematical techniques are previously designated. 

A key question in the pedagogical sense is to make clear and explicit which are the different 
sorts of knowledge and related abilities that each of these activities may require. This 
question is a particularly appropriate when teaching mathematics for engineers, as the 
competency to build models and mathematical models of a given situation, to interpret them 
and to use already existing ones is expected together with a high competency in mathematical 
knowledge. 

Thus, a first step in the analysis of these issues is the identification of processes and 
competencies required to engage satisfactorily in these activities.  

The purpose of this work is to present theoretical results which are the product of the 
reflection on the results of engineering students´ performance when facing different 
modelling activities and problem solving within the mathematical classroom in two different 
approaches: 

a) when different degree of information, guidance and assistance were provided in order to 
solve a same problematic situation  '[2], [4]' and 
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b) when different sort of activities requiring a variety of strategies and approaches related to 
organization and structuring of the model, strategies and manipulation of data were presented  
'[3], [5]'. 

These research studies '[2] - [5]' were carried out with students of different levels (novice, 
intermediate and advanced) and permitted us the identification and analysis of students’ 
processes, required competencies and difficulties in three stages of the modelling activities: 
structuring the model, formulation of a strategy and resolution and interpretation of the 
results. 

This description will be presented in section 2. In section 3, we will discriminate and analyse 
which of these processes and competencies are involved in different activities developed in 
the courses like modelling real situation, mathematical modelling and applications as 
examples and as motivational devices.  

In section 4 we will present a summary and final remarks. 

2 Processes and competencies in different stages of the modelling activities 

2.1 Stage I – structuring the real model  

2.1.1 Processes 

Understand the given problematic situation.  

Generally, modelling situations are non-standard problems for the students. In order to solve 
them, previous knowledge must be restructured. Understanding involves identification,  
discrimination, generalization and synthesis, perceiving the links between apparently isolated 
facts, properties, relationships, etc., organizing them in a consistent whole. 

Formulate the mental model, which structures the contextual situation. 

Three processes may be considered when thinking about novel situations: reasoning by 
similarity, by mental simulation and by formal reasoning. 

Reasoning by similarity: the given situation is considered similar up to some extent with a 
previous known situation. These similarities could be superficial features of the problem or 
more abstract relational characteristics. This approach ranges from the direct retrieval of a 
situation at one extreme to the analogical reasoning at the other, passing through processes 
like generalizing, evoking and reasoning by means of a paradigmatic example. 

Mental simulation: the problem is analysed by imagining the consequences of an action. 
Formal reasoning: a formal symbolic system is used to approach the problem. 

Generally, several of these processes are activated simultaneously or sequentially in an 
intuitive and not controlled way. 

2.1.2 Competencies  

Relational understanding. It consists on the correct interpretation of the involved concepts 
and in their connection and structural organization. 

The relational understanding leads to the formulation of a mental model of the real situation 
within the context in which the given situation is mentally represented. 

Several of our studies have shown that the mental model that a student produces is the 
simplest one that presents certain degree of coherence with the given information. 

Accessibility (the ease with which particular mental contents come to mind), availability and 
handling of previous knowledge. 
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Creativity. Creativity has been observed as a process external to mathematical theories and to 
science theories.  It is required for the design of strategies (and Mathematical Models) since 
this design may demand the student to create new ideas and to relate old ideas in a new way, 
extending the context in a way that is different from the context that was known before. 

Ability to check up the feasibility of the proposed model. The student should develop some 
criterions (based on related knowledge and/or common sense) that allow him to evaluate if 
the approach to the problem may generate a feasible strategy of resolution.  

2.2 Stage II – Elaboration of a strategy and resolution  

2.2.1 Processes  

 a) Real context 

Select operative representations within a contextual framework. That is to say, 
representations that permit to reason, solve and interpret the results within the chosen 
working context.  

The representational resources allow the student to structure the information and economize 
mental resources and reasoning. Though the representations may or may not be done in a 
mathematical context, our main interest was focused on the mathematizing processes. 

 b) Mathematical context (Mathematization) 

Construct a mapping between a non mathematical system of representation and the 
mathematics that the student associates with it. 

Select operative representations within the mathematical framework (variables, tables, 
diagrams, graphics, formulas, etc.) 

Use mathematical techniques. The elaboration of the mathematical strategy usually requires 
the extension of knowledge, whether procedural or/and conceptual '[7]' to a novel domain.  

The conceptual knowledge is characterized by being rich is relationships among information 
units. When a relationship is built at a higher level of abstraction than the information that is 
being connected, this relationship is produced in a reflective level. 

Procedural knowledge is characterized by the sequential relation of procedures or sub-
procedures. It encompasses two parts: a) formal language or representational symbolic 

system and b) algorithms or rules to complete the mathematical tasks.'[7]'. 

2.2.2 Competencies 

Creativity in the combination of mathematical concepts and representations.  

Human beings have the tendency to organize and integrate intuitive, logical and analytical 
cognitions within a coherent and efficient structure. With experience and instruction, strong 
and stable beliefs are established. These beliefs act at the moment of choosing the strategy for 
the resolution of a problem '[6]'. 

Accessibility and availability of mathematical knowledge: concepts, mathematical techniques 
of resolution, procedures and sequences of procedures. 

Flexibility to develop different types of reasoning and representational changes. 

Several representations of the same concept may be integrated making the abstraction process 
possible. Experts deliberately retrieve different known representations and change from one 
to the other seeking for the most suitable one, while students generally carry out this process 
intuitively and in a not controlled way. 
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2.3 Stage III – Interpretation of results 

2.3.1 Processes 

Evaluate the effectiveness of their own proposed model and the strategies and 
representations that have been selected. This evaluation involves certain verifications such 
as: 

Whether all the conditions and restrictions of the situation have been accounted for, whether 
the conclusions or results really respond or solve the problem and whether the strategies or 
methods are feasible. 

Select communicable symbolic representations to elaborate the discourse. The use of 
discursive elements in mathematics is influenced not only by the representational system that 
the student uses, but also by the student’s suppositions about what is expected from him in 
terms of formalization. 

2.3.2 Competencies 

Use criteria to evaluate the model. That is to say, the student should be able to analyze the 
possibilities and restrictions of the proposed model.   

Be familiar with and able to use a range of discursive resources. 

Most of the mention processes and the competencies  are required when modeling a real 
world problems. However, within the mathematical classroom, these processes and related 
competencies may vary according to the degree of information and guidance provided to the 
students and also according to the sort of problem that they have to face. In the next section 
we will discuss and exemplify processes and competencies in different situations: modeling 
and mathematical modeling with different guidance, and applications used as example and as 
motivational device. 

3. Modelling and applications in courses  

3.1 Real world modelling  

We will focus on those activities of building the real model, which admit a mathematical 
translation. These activities seem to be the richest ones in terms of processes and related 
competencies, and in this sense, they are important in the formation of engineers as they 
encourage the ability to extend different pieces of knowledge to other contexts, which is 
essential for the development of their professional life. 

However, when a free modelling activity is presented to the students within a mathematics 
class with predetermined teaching and learning goals, it may happen that the 
students’formulation of the real model involve a solution with little interest for those goals. 

For instance, a group of (40) novice engineering students were asked "How would you find 
out a mountain's height"?. The students could use any knowledge, technique or device to 
solve it. 30% of them solved it in a variety of a non-mathematical context. For example, a 
student proposed:“I would use a thermometer. I know that each 100 meters of height the 
temperature decreases 1 degree. So, I would check the temperature on the base of the 
mountain, and then I would climb, and would take the temperature on the peak of the 
mountain. In this way, I could know approximately the height of the mountain”. '[3]'  

Other students proposed to reach the peak with a helicopter and to read the altimeter, or to 
use a scale evaluating the differences of weight of the same person in the base and the peak. 

Though the students evidenced great creativity in the attempt to solve the problem and some 
of these solutions, correctly posed and developed could lead to a successful solution, they 
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would not be interesting if the goal is working in trigonometry. Only 6% of the students 
proposed this approach.  Moreover, the feasibility of the methods – like hiring a helicopter to 
measure any mountain's height, or climbing a mountain carrying a scale to weigh a person-  
which is a relevant issue in engineering studies, should be discussed. 

Sometimes, the formulation of the real model requires a specialized non-mathematical 
knowledge (physics, chemistry) that is not always available to the students.  

For instance, a group of 35 students were asked to give a method to find out whether a buried 
tank that contained a salted solution had a leakage, knowing that no direct way of measuring 
the volume was available, but the injection and removal of some liquid and also the 
measuring of the corresponding salt concentration was possible. '[2]'  

Again, in this case, the students proposed barely feasible empirical non-mathematical 
methods, (like a direct measure of volume -17%- for example, "empty the tank, fill it again 
and measure the resulting volume"). Only with extra suggestions, could they attempt a 
mathematical model of the situation. Yet 25% of the students considered that the salt 
concentration was constant, and they had difficulties when working with this notion. 

The main processes and related competencies involved in these activities are the mentioned 
in Stages I and II a) and summarized in Table 1: Understanding, (which is the problem), 
mental modelling:  (the mental representation of the real situation and the steps he or she is 
going to follow in the real context looking for the solution), selection of operative 
representations in context (context variables like measures of concentration, of temperature, 
of angles etc.) 

3.2 Mathematical Modelling 

In mathematical modelling activities, the real model is given or suggested in a 
context. 

The student should do the mapping of the real model components with the mathematical 
concepts and should design of a resolution strategy, selecting the mathematical 
representations to work (a coordinate system, derivatives for rates of change).  

If the model requires other mathematical resources which exceed the course contents, or if 
the mathematical topics turn to be too complex, the solving process could need to be guided 
or suggested. 

We have considered a subtle difference between the expressions guided or assisted and 
provided by instruction. While the term guide suggests a provision of information in steps, 
after which the student has to elaborate the mathematical model, the term provided by 
instruction entails a different process: the mapping between the real and the mathematical 
contexts results as an expected consequence of the mathematical content recently taught. 

According to the guidance and assistance, the processes and competencies involved in this 
sort of activities are the ones mentioned in Stage II, and summarized in Table 1. 

For instance, in the mentioned problem of the buried tank, different groups of students were 
given different sort of guidance. One of the groups was asked to model mathematically the 
cases of non-leakage and leakage with the single information that it was possible to inject and 
remove solution with a fixed concentration at a constant rate into the tank. In this case, many 
difficulties were found at the mathematization stage. 60 % of the students unsuccessfully 
used very simple mathematical concepts, showing a strong tendency to linear models. 
Instead, another group could solve it when the formulation of a differential equation was 
guided (Guided Model). 
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In another experience, a group of (80) students taking a course of Several Variables Calculus 
was suggested to construct a method for edge detection of digital images. Both definitions, 
image as a matrix of pixels and edge point, were provided. The mathematical model was 
neither guided nor suggested (Unguided Model). However, the solution was accessible for 
these students. 90% of them successfully solved it using discrete directional derivatives in the 
gradient direction to detect the edge points. '[4]'  

 3.3 Applications as examples 

A main difference between a guided mathematical model of a real situation and an 
application presented like an example is that in the first one the student is assisted to 
construct a model. In the application, instead, several of the processes are developed through 
the instructional activity. As a consequence, the processes and competencies required by 
these activities are different. They are summarized in Table1. 

For instance, in a third course of Mathematical Analysis (40 students), after teaching the 
Distribution theory, the students were asked to use distributions to solve the following 
problem: "Find the force acting on a ball that is moving on a straight line on a flat horizontal 
surface without friction which is hit by a hammer." 

60% of these students solved the problem using distributions reaching the following final 
result: F = kδ  where δ  is the Delta functional. 32.5% could not implement mathematical 
techniques, 7.5 % made no attempts to solve the problem. '[5]' 

This problem, solved by the students as an application example, was useful to detect whether 
they could identify the physics unit impulse with the defined delta functional.  

In the applications presented as examples, the formulation of the real model is assisted, and 
the formulation of the mathematical model with the different processes involved (selecting 
operative representations in context and in mathematics), are provided by instruction. The 
corresponding mathematical knowledge must be available to the students. An application as 
an example to be solved by the students is used to show that the mathematical content 
recently taught may be transferred to another context, enhancing the meaning of 
mathematical concepts. In this way, mathematics proves to be a useful tool. An application as 
the mentioned problem could be used in another didactic way as the motivation to introduce a 
specific topic or theory.  

 

3.4 Applications as motivation 

A real mathematizable problem may be presented as an illustration of a mathematical 
theory recently taught, or also as a motivating introduction of this new content. 

For example, the mentioned problem about hitting a ball with a hammer may be used as a 
motivation to introduce the theory of Distributions to extend the notion of function. 

In an application used in this way, it is expected that the students discuss the formulation of 
the real model. As the mathematical knowledge is not available yet, the different 
mathematical models presented by the students during the debate are usually incomplete and 
unsuitable, producing the cognitive conflict, which will generate the need for the 
development of the new theory.  

For instance, in a class of 30 students where this problem was used as a motivating example, 
the students associated the acceleration with an impulse, some of them knew from physics 
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others defined it as equal to 1 at t =0. Contradictions with the theory of Riemann integrable 
functions were remarked at that moment, thus generating the cognitive conflict. 

Another student proposed a function whose graphic is bell-shaped explaining :“..., it does not 
happen that suddenly in one instant the ball changes from velocity zero to a velocity v 
because there does not exist an impulse lasting only one instant, but it is an interval (a very 
small one) where there is a large variation of velocity.”  
This idea was shared by many other students of the class and was used by the teacher as a 
starting point to introduce the regular sequences approach to slow growth distributions. 

The formulation of the real model and an attempt to construct a mapping between the real and 
the mathematics contexts, were present during the discussion. The criterion of feasibility was 
also encouraged at that moment. This resulting debate aimed to make the students recognize 
the need of an effective mathematical theory, in this case, the distribution theory. 

In the same way, the problem of determining the instantaneous velocity, or how to draw 

a tangent line to a function graphic curve, motivates the introduction of the concept of 
derivative in elementary calculus courses, and Fourier Series may be introduced after an 
incomplete attempt to solve the Heat Equation. 

3.5 Summary  

Table 1 presents the processes and competencies for each of the activities 
corresponding to the four different approaches: An Unguided Modelling Activity, a Guided 
Modelling activity, an Application as an Example to illustrate a mathematical topic (solved 
by the students), and an Application as a Motivating Example. 

4 Final remarks 

In this work, we have exposed processes and competencies related to different stages 
of the modelling activity in order to construct a mathematical model of a real situation. 

A desirable modellig activity in mathematics courses might be to carry out the whole process 
of modelling ranging from the real world situation to the mathematical model and the 
corresponding resolution, however this kind of activities are time-consuming and the 
modelling activity is not always workable at the mathematics course. In addition, if the real 
contexts or the mathematical resources to be used are too complex or sophisticated, guided 
steps for resolution will be possibly required (Guided Modelling Activity). The processes and 
competencies developed will vary according to the provided guidance or assistance and/or 
according to the sort of proposed activity. The possible difficulties in the development of 
each of the activities must be also considered. 
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Activities 

Math 
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Applications 
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X 

 
 
* 

 
 
◊ 
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Mapping   
X 

 
X 

 
* 

 
◊ 
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taught 

Selection of 
Mathematical 
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X 

 
X 
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◊ 
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taught 

IIb) 

Implementation 
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         X 

 
X 

 
X 

 
X 

To be 
taught 

 
 
     - Creativity 
 
    - Accessibility 
and Availability 
of math 
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   -
Representational 
Flexibility 

Evaluation of 
effectiveness 

X X X --- ---- III 

Elaboration of 
discourse 

X X X ---- 
 

----- 

     - Criterion of 
feasibility 
    - Discursive 
resources 

 
Table 1. Processes and competencies in different stages for different sort of activities   

U:Unguided,  G: Guided,  X: By himself,  * : Assisted ,  ◊ : Provided by instr 

 

An observed difficulty of these activities '[2], [4]' is that the students might miss the whole 
process and become distracted by the details of each step. The interpretation of the model will 
be poor and the development of the competencies will be affected. Adding an exploratory 
complementary work might enrich and balance this dissociating effect. 

Applications of mathematics deal with mathematical aspects of reality and with mathematical 
models which are already built. '[1]'.  

While deciding the sort of activity to be performed in class related to a real problem, an 
important question emerges at this point: if the teacher knows the model that fits the real 
situation in advance, may the problem still be considered a modeling activity or should it be 
considered an application given as an example of the use of the mathematics that was taught 
during the course? The answer has to do precisely with the processes that are involved in the 
activity and the competencies that are required to solve the situation. 
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Two different approaches for applications have been chosen: as a post-teaching example and 
as motivating example previous to the teaching of a mathematical content, that, as stated, 
require different sorts of knowledge and related abilities. 

These approaches for applications are also used as didactical resources connecting students 
with some classical models, which they may explore as an advisable task, even though these 
models are not available to be constructed by them. 

It is important to notice that a mathematical model used as a didactical resource must be 
adequate to promote favorable learning instances. It is convenient to look for models that 
correspond to real situations, that are attractive, accessible for teachers and learners, ready for 
simulation if possible, and that require little extra mathematical knowledge. If this is the case, 
the same problem might be used in the different approaches for applications or mathematical 
modeling activities. 

Further research is needed to obtain adequate real problems fulfilling these conditions. 
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Abstract 

This work describes the design and development of an intelligent tutorial system as a 
supporting tool to the teaching of solid of revolution volume calculation, which is one topic 
included in the Integral Calculus subject matter syllabus for students of engineering at 
Universidad Metropolitana. 

The proposed instructional design considers stimuli associated with the prevailing learning 
style of the users [1], and combines both behavioral and constructivist approaches within a 
“learning-by-doing” [2] context. 

A developmental methodology of educational application for multimedia [3] environments 
was chosen in order to define and produce the tool, incorporating typical schemes and details 
of intelligent tutorial systems [4], as well as elements of object oriented software 
development which altogether enrich and strengthen methodological designs where a priori-
established objective achievement controlling rules of the multimedia application are 
structured. 

As a result, MASTERMATIC—a teaching resource for the study of a mathematical 
application [5]—was developed. It integrates the constructivist approach, prevailing learning 
styles [6], intelligent tutorial systems and multimedia methodology. It is a dynamic, user-
friendly and flexible application oriented towards handling, visualizing and understanding 
one of the most-widely studied and required-by engineering students [7] integral calculus 
applications.  

Key words: intelligent tutorial systems, learning styles, educational software design and 
development. 
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Engineering student competence development through 
mathematics teaching 
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Abstract 

 

The terms Knowledge Society and Knowledge Management are source of new challenges for 
universities which, at the present time, are considered as permanent learning oriented 
organizations [1]. New tendencies in education aim at competence development training to 
satisfy the needs of the XXI century professional [2]. According to this approach, 
competences lead the sense of the learning process, surpassing the gap between knowledge 
acquisition and the capacity to apply it [3]. 

In this sense, the need to reorganize existing training programs arises - taking into 
consideration all competence building processes [4] - with the purpose of creating curricular 
designs not only to learn but to continue learning as well, and to fulfil professional profiles 
required by both context and society [5]. 

On the other hand, one of the most spread general tendencies in the field of mathematics 
teaching today is based on the transmission of all discipline-related thinking processes in 
order to go far beyond mere content transference [6], [7]. 

Under the above mentioned framework, this research proposes a qualitative approach 
methodology [8] through which a diagnosis is made [9] in order to establish and isolate the 
generic competences and the specific contents that – derived from the teaching of 
mathematics - must be fostered and worked to consolidate a new way to train engineers at 
Universidad Metropolitana. 

As a result, six subject matters were chosen to be used as support platform to develop seven 
identified generic competences, in a systematic, explicit and ordered way. 
Keywords: Generic Competences, Cognitive Processes, Mathematical Competence. 
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A report on the use of tablet technology and screen 
recording software in tertiary mathematics courses 
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Recent developments in technology have allowed lecturers to experiment with new ways of presenting and 
recording lectures in several mathematics and statistics courses at The University of Auckland. Lectures have 
been delivered using a tablet computer, with all the activity on the screen captured as a digital recording along 
with audio-narration of the lecturer’s commentary. This paper describes the thoughts, challenges and 
experiences of the staff involved in establishing this project, and reports on the findings from a number of 
sources of student-feedback with respect to the use of this technology. Whilst there have been some teething 
problems in the initial stages, our overall impression is that this technology greatly enhances students’ learning 
experiences, and we should continue to develop the potential of this technology. 

1. Introduction 

Although tablet technology itself has been available since the early 1990’s, Loch [1] 
notes that very few tablet PCs have been sold into academia, with an even smaller degree of 
use in teaching. Two papers presented at the Delta’05 conference [1, 2] reported on the 
author’s use of tablet technology in teaching undergraduate mathematics. Recent software 
developments enabling a simple mechanism for recording lectures enabled this use. With the 
exception of the MathOnline project at The University of Colorado however [3], it appears 
that in most cases this technology has been used for static recording of lectures in pdf format 
without a video or audio component.  

At the University of Auckland, there has been an increasing use of tablet technology in 
teaching since the start of 2006. Lectures delivered via the tablet have been dynamically 
recorded, capturing both the live writing and images shown to the class, and an audio of the 
lecturer’s voice. The files were then placed either on individual course websites, or on Cecil, 
the university’s learning management system, allowing students the opportunity to review 
any part of a lecture repeatedly at their leisure. What started in late 2005 as an innovative 
solution to a problem encountered by one of the lecturers with usual lecture-delivery methods 
rapidly expanded to be a key means of delivery in a number of courses in both mathematics 
and statistics. This paper will detail the history behind this project’s inception and describe 
the technology, software and processes used by our mathematics courses to deliver, record 
and post the lectures. Another report has been separately presented on the use of this 
technology at the University of Auckland in statistics [4]. Experiences of teaching staff and 
students are described using departmental reports and feedback from student surveys and 
journal excerpts. Practical issues of implementation are considered, along with a discussion 
of potential pedagogical benefits and disadvantages. Finally, we discuss possibilities for 
future development, including the use of tablets in video-conferencing between research 
groups.  
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2. Background 

As is frequent with new developments, the use of tablet technology at Auckland was 
more a result of providential circumstances, than any awareness of its similar use elsewhere. 
Even after the initial decision to proceed, the project was more an organic response to local 
conditions than a reflection at that time of pedagogical or technological perspectives 
supported by literature studies. Associate Professor Paul Bonnington first became familiar 
with the technology through his role as Associate Dean to the Faculty of Science, responsible 
for Information Technology. Bonnington had long encountered difficulties with standard 
lecture presentation. He is left-handed and finds using either blackboards (or whiteboards) 
and overhead projectors problematic, as his hand either blocks or rubs out writing. Although 
PowerPoint seemingly offers a potential solution to this, it does not provide the spontaneity 
of a normal lecture and it is very difficult to reproduce the natural unfolding of a 
mathematical problem that takes place on a blackboard or OHP. PowerPoint slides that do 
attempt to reproduce this process are usually extremely time consuming to produce. 
Bonnington’s initial idea was to use the tablet as a sophisticated OHP that would enable him 
to write out problems without the usual left-handed difficulties. At the same time, he realised 
that it would be simple to capture the lectures and make them available as a static pdf file, 
which would have the benefit of limiting the amount of notes students would have to take, 
without the need for him to prepare comprehensive notes or hand-outs in advance. Although 
he was aware that it was possible to capture the lectures dynamically, in this initial stage he 
did not realise that this was pedagogically desirable.  

In early 2006, Bonnington met with members of the department’s Mathematics Education 
Unit, and discussed his proposals and sought their advice on how to proceed from an 
educational perspective. They enthusiastically endorsed his ideas and strongly recommended 
that he should indeed record the lectures dynamically. Mike Thomas noted at this meeting 
that if possible Bonnington should capture both the written and audio parts of the lecture, 
arguing that this technology offered both the technological benefit of being able to link 
together multiple-representations in real time as well as the chance to review the links 
repeatedly! Bonnington then explored “lecture-recording” on the web to see what was being 
done elsewhere. There were many examples, particularly in distance learning, but most made 
use of video camera recordings. For example, the University of Western Australia delivered 
pre-recorded lectures on the web as opposed to CDs or cassettes, while the Department of 
Statistics at Auckland University provided a comprehensive set of resources for its large first-
year undergraduate statistics course including narrated PowerPoint lectures, and small movies 
on particular concepts, made available to students on a CD [4]. Bonnington found little 
evidence of live recording of lectures, but more importantly, what was available was largely 
by way of video camera recording which generated large unwieldy files. These files are 
usually too large to load on a memory stick and too big to be easily downloaded over the 
web. Hence they usually require students to view them from a computer lab, or by purchasing 
a CD, which contradicts the spontaneous nature of live lecture recording. Knowledge of the 
MathOnline project at The University of Colorado [3] only became available later when 
examining the outcomes of Auckland’s developments. 

Bonnington first trailed the use of the tablet in delivering and recording lectures in his third-
year course Combinatorial Computing in the first semester of 2006. This course for 
approximately 30 students seemed ideal, as it has a strong focus on graphical representation, 
covering aspects of the representation and generation of discrete mathematical structures, 
searching and sorting methods, graph algorithms, block designs, coding theory, and 
computational complexity. Despite some early teething problems (e.g. no sound in the second 
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lecture), Bonnington was extremely excited and satisfied with the results of this trial, and 
despite no promises being made, the students also seemed highly supportive. Bonnington 
reported back on this trial to the mathematics and other departments in a seminar at the end of 
semester one 2006 (July), with the result that the Statistics department immediately adopted 
its use in semester two for their very large first-year course, which often has upward of 500 
students in one lecture stream [4]. Another first-year mathematics course for mathematics 
majors also experimented with the technology in semester two 2006, and extended this use in 
semester one 2007, along with two other first-year courses and a second-year course.  

The next section will detail the nature of the technology used, and how it was practically 
implemented. It will also discuss some of the educational issues that have arisen from this 
project with an examination of the literature. 

3. Screen recording1 

After making the decision to proceed with the initial trial at the start of 2006, choices had 
to be made about which particular technology to use. There was also a growing realisation of 
the educational and pedagogical issues involved. The main motivation had by then moved 
from a simple solution to the left-handed lecturing difficulties, to a strong conviction in the 
value of enabling students to review any part of a lecture as many times as they wish. The 
rationale behind this came from a feeling that ‘much of the information presented in lectures 
is lost, and this is particularly true in the Mathematical Sciences’. In this section we will 
describe the technology we used and its implementation, as well as discussing some of the 
theoretical issues that have emerged from this project. The chief goals of the project were to 
give students the opportunity to re-visit lectures, both audially and visually, and to produce 
these resources with minimal effort and cost. 

3.1 Technological Perspectives 

Screen-recording packages capture the visual display used by the lecturer, and may 
include audio recording of the lecture. Over the 2005/2006 summer break, Bonnington 
evaluated several screen-recording packages, finally settling on a combination of an HP 
Tablet2 to write on, and a software package called BB-Flashback3, which enabled the 
recording and editing of onscreen activity with associated audio. Both the tablet and the 
software are relatively inexpensive, although one of the lecturers noted in their report that 
each lecturer or course really needs their own tablet, as sharing a tablet caused timetabling 
difficulties, which means additional expense. The tablet is also easily transportable, although 
of course this effect is lessened if a data-projector has to be carried as well. At Auckland, all 
main teaching rooms are equipped with a data-projector, but this was an issue for a small 
graduate course when Bonnington later lectured in a room without one. 

For courses that involve writing on overhead transparencies, ‘PDF Annotator’  

http://www.ograhl.com/en/pdfannotator/ 
enables the capture of annotations made by the lecturer on the pdf version of the lecture 
notes. PDF Annotator allows the lecturer to write on any pdf document using a variety of 
pens and highlighters. In most cases, writing is done on the tablet (which takes a little 
practice) and Microsoft Office was installed on the tablet to enable Word files and 
PowerPoint shows to be displayed.  

Although products enabling screen recording have been available for some time (e.g. Lotus 
Screencam in 19935), these products produced large files and were limited in their editing 
facilities. Recent technological advances support smaller, more compact file formats such as 
Macromedia Flash6 and have enhanced editing capabilities. These files are widely viewable 
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on most web-browsers, Macintosh and Linux machines. Delivery of screen recordings in 
most courses in this trial was supported by Cecil7, the university’s own platform for internet 
delivery of resources, administration and communication, although some staff used their own 
course’s website and employed other software products to transfer documents to the website. 
Cecil can be accessed from anywhere in the world, and students are familiar with Cecil which 
they use for routine management of their learning across all courses at the university. As a 
result of the students’ exposure to Cecil, they are able to find each day’s lecture easily. They 
can either play the lecture in its entirety or they can download the lecture to a memory stick 
for playing on their home computers without relying on internet access. The replay format 
allows them to find particular parts of the lecture that they wish to review quickly and easily, 
another advantage over other recording systems such as videos or CDs. The exporting facility 
of the BB-Flashback software allows for more than one format, such as the ubiquitous Adobe 
Flash format and self-contained Windows executable files.  

Thus in addition to many potential educational benefits discussed in the next section, the 
practical advantages of modern screen recording technology over previous methods of 
recording are that it is much cheaper to deploy, it is more easily transportable, and the 
resultant files are much smaller and easier to work with. By way of comparison, a 1-hour 
lecture using a video camera would produce a file of around 100Mb in size, the equivalent 
screen recordings are about 14Mb. An entire semester’s worth of lectures fits on one CD.  

3.2 Educational Perspectives 

The goals of the Auckland project assume that lectures will (and should) continue as a 
basis for primary delivery of mathematics courses, and that providing screen recordings of 
lectures will enhance learning. Both these assumptions should be examined critically. 
Lectures have come under increasing scrutiny and criticism, with suggestions from some 
quarters that we should abandon lectures in favour of the convenience and availability of 
technology [5]. Against this, we need to balance the value of such technology in learning, as 
one professor argues, ‘just because I am competent with technology… (does not mean) my 
students would magically learn better…the criterion for bringing technology into my courses 
should always be: will this enable me to pose questions that better engage my students, spark 
their curiosity, and push them to think critically and, ultimately, to learn?’ [6].  

   
1 Screen recording  http://en.wikipedia.org/wiki/Screencast 
2 HP tablet  http://www.hp.com 
3 BB-flashback  http://www.bbsoftware.co.uk/ 
4 http://www.ograhl.com/en/pdfannotator/ 
5 Lotus screencam  http://www-306.ibm.com/software/lotus/ 
6 Macromedia Flash  http://www.macromedia.com/software/flash/ 
7 Cecil  http://www.cecil.edu/html/about.htm 

 

In [5], Cretchley argues powerfully for the continuation of lectures. She notes that ‘there is 
substantial and documented evidence across a wealth of educational literature that teacher-
centred learning has a strong positive effect on student performance’ [p. 43]. Lectures 
provide an important source of socialisation and sense of community and purpose for 
students; they can inspire and motivate, and provide a natural environment to establish 
complex links between the different representations of mathematical concepts [5, 7, 8]. 
Despite the widespread availability of online materials, and many courses providing 
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extensive online resources including PowerPoint shows of lectures and in some cases pre-
recorded lectures, the majority of students still attributed a large percentage of their learning 
to lecture attendance [9]. Further, Cretchley [5] found in her study, that in contrast to some 
reports, lecture attendance has not greatly diminished.  

However, given that lectures remain an important component of student learning, there is a 
significant problem that much of the information presented in lectures is often lost. Very 
often, the full explanation for steps in a calculation or logical deduction is presented to the 
student verbally, or written on an OHP or blackboard. Inevitably, some students cannot 
reconstruct the explanation from the written notes and confusion, misunderstandings, and 
even frustrations can result [2]. Lectures present a great amount of complex information, 
usually in an equally complex variety of modes and representations. Students need to make 
sense of multiple representations and confront cognitive conflicts within the unique discourse 
of mathematics, whilst simultaneously taking notes [7, 8, 10, 11, 12]. Ball, Bass and Hill [13] 
argue that advanced mathematics is compressed into abstract symbolic forms and teachers 
need to unpack this mathematics so that what they present to the students is level-appropriate 
and accessible, a view supported by Tall [10] when he notes that: 

‘Advanced mathematics, by its very nature, includes concepts which are subtly at variance with naïve 
experience. Such ideas require an immense personal reconstruction to build the cognitive apparatus to 
handle them effectively. It involves a struggle […] and a direct confrontation with inevitable conflicts, 
which require resolution and reconstruction’.  

These demands are compounded greatly both for what Tall [14] describes as Natural learners, 
and for students with English as an Additional Language (EAL) [11]. The latter study found 
that EAL students experience a 10% disadvantage in overall performance through lack of 
textual understanding. They conclude with respect to undergraduate mathematics, that 

there is some evidence that there is a fundamental change in the nature of the discourse: not only do the 
normal features continue to get more complex, but also the use of mathematical discourse changes in 
several ways…The roles of definitions, axioms and theorems in mathematical argumentation are subtly 
indicated in their linguistic expression. General English is used in increasingly creative ways to 
describe the increasingly sophisticated nuances of mathematical concepts [11]. 

Compounding this may be the fact that many lecturers are unaware of much of these 
complexities, exhibiting what Nathan and Petrosino [15] term an expert blind spot: 

…educators with advanced subject-matter knowledge of a scholarly discipline tend to use the powerful 
organizing principles, formalisms, and methods of analysis that serve as the foundation of that 
discipline as guiding principles for their students conceptual development and instruction, rather than 
being guided by the knowledge of the learning needs and developmental profiles of novices. [15, p. 
906]  

Not surprisingly many students struggle with this complex combination of demands, and can 
experience what is often referred to as cognitive overload. Far from decreasing this overload, 
the plethora of resources and technological aids commonly now made available to students in 
their courses may indeed add to it, as students struggle to identify what is important and what 
is not. Using lectures as the principal delivery method, scheduled at fixed times, does also not 
take into consideration individual learning styles and preferences. Cretchley asserts that an 
‘awareness of tertiary students’ changing goals, needs, preferences and perceptions is vital if 
educationalists are to respond quickly and appropriately’ [5, p. 42]. D’Arcy-Warmington 
describes many ways of learning, and observes that ‘university tends to use principally 
linguistic and logical-mathematical modes in teaching, thus missing the opportunity to relate 
to all of the learning styles and hence all students’ [16, p. 175]. The importance in 
recognising and catering for individual styles is supported by Oates et al [17] who conclude 
that: 
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The most comprehensive conclusion that can be reached from this study is in the area of individual 
student preferences for different styles of learning … It is clear from the findings of this study that the 
standard lecture delivery method is not catering for the needs and/or the preferences of the majority of 
our students … there is a clear indication that we should include a significant amount of (different 
learning) opportunities within our courses for students. [17, p. 738] 

Recording lectures using tablets and screen recording may be seen to address many of the 
issues identified in the preceding discussion about lectures and individual learning styles and 
preferences. In addition to stimulating interest and meeting changing student expectations [2, 
5,18], tablet technology provides several advantages over previous methods of recording and 
suggests a range of potential pedagogical benefits. In their report, the Statistics team note that 
when students revisit lecture material that they have found difficult, there is an ‘association 
between the concepts delivered in the lecture and the reinforcement that they receive from the 
screen recording of the same lecture. This is an important difference between screen 
recording and pre-recorded lectures’ [4]. Further, given that human contact is a significant 
feature of lectures for students [5, 9], the direct association of the recordings with a specific 
lecture may well add a human dimension to the use of technology that is not possible with 
pre-recorded lectures or PowerPoint shows [19]. Bonnington supports this and notes the 
potential for greater benefit from re-watching earlier lectures towards the end of the course, 
as it is very likely that what was said in earlier lectures would be more meaningful to students 
later in the course. This is not unlike re-watching a murder story once one is aware of the 
identity of the villain – the clues and connections are far more obvious! He sees another 
advantage over video recordings in that the screen recording focuses entirely on the written 
work (with audio-support), avoiding the potential distraction of what he describes as a 
‘talking-head’.  

The tablets also provide an excellent mechanism for realising the benefits that technology 
provides for linking multiple representations of mathematical concepts [2, 8, 18]. Not only 
does the tablet provide a versatile platform for computer-aided learning (e.g. Matlab, Maple), 
but also instruction in the use of these can be demonstrated in lectures using the tablet, which 
students can later review. Although not as good as the students interacting directly with the 
technology (as would occur in a teaching laboratory), it is a big improvement on passive 
demonstration without the opportunity for later interaction offered by the recordings [1]. In 
this respect, the tablet offers an opportunity to integrate the many aspects of the lecture 
process, perhaps lessening the potential for cognitive overload [2, 18]. In addition, the way 
that the tablet allows students to both follow and later review the spontaneous development of 
a mathematical problem is a significant advantage over such non-interactive programs as 
PowerPoint [1].  

Research has shown that stepping through examples can improve classroom dynamics, boost students’ 
confidence levels, and promote the understanding of mathematical concepts and function, and advance 
problem-solving ability [2]. 

Professionally, recording the lectures clearly offers teaching staff previously unavailable 
opportunities for critical reflection. Ensuring that mathematically well-qualified teachers see 
the importance of unpacking their subject matter knowledge is an important goal for 
professional development [13]. However, the Statistics team at Auckland warn that there 
could well be concerns amongst staff about their lectures being critically reviewed by other 
teachers [4]. 

The recordings allow for different modes of learning, as students can interact with the 
recordings in different ways [1, 16]. EAL students can review the lectures giving them an 
opportunity to pick up contextual nuances that they may have missed in the complexity of the 
lecture, while allowing students to replay the conceptual areas of the lecture they found 



 25

difficult [11, 12, 14, 15] benefits all, but particularly low-achieving students. There is at least 
one serious risk with the recording of lectures for all students, which is highly likely to 
impact more on students from these two groups, and those with poor study schemas. While 
the recordings allow students who miss the occasional lecture to catch-up, there is the 
suggestion that some students may choose not to attend lectures and rely on the recordings. 
Cretchley [5] found significant performance benefits for students attending lectures, and 
D’Arcy-Warmington [16] warns that students risk missing visual cues by not attending 
lectures.  

Research has shown that gestures may be the window to an individual’s thinking…Basic gestures and 
movements can make an impact on information moving to the working memory and consequently 
being memorable…Simple gestures and body language can convey up to 80% of information and once 
recognised by the educator can be used to improve teaching at all levels 

This problem may be further compounded if lecturers use other modes of lecture display, 
such as a document camera and the overhead projector which will not be visible on the screen 
recording. 

The preceding discussion has highlighted the pedagogical and technological issues 
surrounding the use of tablet technology and screen recording of lectures. Next, we describe 
the experiences of staff and students in using this technology in the project at Auckland 
University, and consider these findings in light of the issues identified in this discussion.  

4. Teachers’ Experiences (extracted from departmental reports) 

As might be expected, lecturer’s experiences varied somewhat with individual teaching 
styles, and staff in the earlier trials experienced more teething problems than those who 
adopted its use later. All staff expressed some frustrations with the use of the tablet, although 
many of these occurred in the early stages of the project, and may be considered as singular 
problems associated with the experimental nature of the trial, e.g. difficulties with sharing a 
tablet, not having available software, inadequate IT support when performing unfamiliar 
tasks such as saving and uploading files, and problems inter-facing with the lecture-room 
systems. The great majority of the remaining issues were of a practical physical or 
technological nature associated with the equipment, e.g. difficulties with using the pen and 
reading the buttons, the small size of the screen which for some staff made writing and 
viewing material very tricky, and a common concern that being connected to the tablet via the 
microphone restricted and inhibited their teaching. One lecturer observed that he had a 
distinctive dramatic style involving much arm-waving and walking around to emphasise 
points, and being tied to the tablet severely limited this. While it must surely be possible, as 
noted in one of the lecturer’s reports, to overcome the physical element of this problem using 
a wireless microphone (this is already described in [3]), there is still the problem as noted in 
the earlier discussion of educational issues using the tablet that students reviewing the 
lectures miss the imagery and visual cues associated with the teacher’s actions. However it is 
quite possible that many of these actions are more for dramatic effect or entertainment value 
than for any special learning benefit. Also, as with many of the other issues, this did get 
easier as the staff got more familiar with the technology. One lecturer described how as she 
became more familiar with using the tablet, she adopted the pen as her standard ‘gesticulator’ 
while another noted in his report that: 

It took me a little while to actually get used to giving a lecture on the tablet - I am used to walking 
around and pointing a bit more. I started off doing that, and then realised that this was not being 
captured, so had to discipline myself to pointing to everything using the actual pointer on the laptop. 

Time factors received considerable mention. All staff cited the need for extra preparation 
time as material ideally should be ready on a pdf file (or Word or PowerPoint) as opposed to 
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being hand-written. One lecturer noted that ‘extra preparation is required as all prepared notes 
need to be in 24 font size with large enough spaces to write in during the lecture’. However, 
this must be measured against preparation time for previous methods, as it is surely no longer 
common practice for lecturers just to write notes from memory on a blackboard or OHP. As 
the statistics team noted in their report [4],  

The investment in time and resources to produce screen [recordings] of each lecture is much less than 
that to generate narrated PowerPoint slides, with the advantage that updates and amendments to each 
course can be incorporated with minimum additional effort. 

Extra time was also required after the lecture converting the files for student use which 
initially took approximately 40 minutes. Lectures need to be saved in 3 different forms - the 
dynamic forms in swf for Mac and Linux users and execute for PC users and the pdf version 
of the final version of the slides for all students to use as lecture notes. The properties of the 
files needed to be checked before they were loaded onto Cecil. This process is much simpler 
now that a link has been set up between Aitken and Cecil. 

Further problems were encountered with using other forms of media in lectures. In addition 
to the pedagogical problem that using other equipment (e.g. document cameras, OHPs) 
means that aspects of the lecture are not available on the screen recordings, there were also 
physical and technical difficulties. For example, it was not possible on Auckland’s e-lectern 
system to use the document camera (for example for a graphics calculator or to show 
manipulatives) and guest computer (the tablet) simultaneously, and switching back and forth 
caused technical difficulties when it was done too quickly. However these problems will be 
addressed as Auckland University is committed to the eLearning environment and the 
lecturers will make increasing use of computer-based or scanning facilities.  It would be 
helpful to have two screens available to allow for dual use, with one lecturer observing that 
being able to ‘use both the tablet and the document camera together would enhance the 
teaching and students would realize they are missing things if they do not attend’. Staff in the 
Statistics department experienced some other difficulties of a technical nature. They 
discovered their Dell laptops have poor microphone inputs, and they encountered sound 
synchronisation problems if recordings were edited extensively. 

Bonnington noted in hindsight that one important ‘mistake’ with the trial was that there was 
insufficient training offered, although the way in which this project grew as an organic 
response meant that staff were not initially aware of what training might be needed. Clearly 
some of the difficulties encountered could have been avoided with proper training, and one of 
the reports accentuates the need for initial training in several areas as described in the 
following list: 

1. the necessary folders to set up, 

2. use of the software: BB flashback, PDF annotator.  

3. connections required in the lecture theatre, 

4. checking systems are working before starting the lecture, 

5. where and how to save the files created, 

6. how to create exe., swf., pdf., files with html files for each lecture, 

7. how to set up folders in the link and transfer the files each day  etc. 

Bonnington agrees that the method needs full documentation and training support, but he 
believes that the total training time required (unguided) to become familiar with the 
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technology is not great, about 2-4 hours being sufficient, with about half the time for the 
software, and the remainder for the tablet. 

Other concerns included apprehension about being recorded, especially since BB Flashback 
records the lectures very clearly, mistakes and all! One lecturer stated that ‘I never actually 
heard any of my own lectures (and don't really want to)’. Such a reluctance or lack of time to 
do so unfortunately negates the potential professional development benefits of critical 
reflection offered by this technology suggested in 3.2. Lecturers also need to remember to 
repeat any questions from a student before answering it so the recorded answers make sense, 
since only the lecturers voice, not the students, is recorded; this is good teaching practice as 
often students do not hear the initial question. In larger courses with several teaching staff 
teaching streams at different time, equity issues for students arise if not all staff use the tablet 
and ideally all staff should do so. However, this did not seem a big issue in one course where 
this was not possible. While the students who were not taught using the tablet did indicate a 
sense of being disadvantaged, many of them also noted that they made use of the lectures 
recorded for other streams, even if they were not delivered by the same teacher! In this 
respect, one of the lecturer’s reports stated: 

I think it is nearly as good as attending lectures.  It was notable that students from … further afield 
[extra mural students who did not attend lectures] felt that they had participated – they felt they knew 
the lecturers (and were very familiar with me!), had been able to enjoy the jokes and to hear the 
lecturers answer other students’ questions. At least one reproduced the motions that I felt may have 
been lost in teaching determinants. On a blackboard, one uses an arm to cover up a row or column, … 
on the tablet, I used the highlighter pen to cover them, then deleted that highlighting before 
highlighting another row or column. Last week I watched a student from Hawera covering a row with 
his finger or pen as a matter of course. 

Bonnington noted that lecture attendance was certainly down on previous years, some days 
less than a third of the class attended. However, there was a core group of regulars, and 
overall he felt that performance and understanding of all students was up on previous years. 
Another class had attendances in the order of 60%, which did not seem greatly different to 
what was usual. The lecturer of this class did however notice that there was a tendency for 
some students to rely more on the lectures and not read the manual or text, and therefore to 
miss out on material not covered in the lectures. One of the lecturers worried that the less 
industrious students used the recorded lectures as an excuse not to turn up. This was 
particularly noticeable in the 8 am stream, with numbers dropping from about 70 to 25. 
Similarly, another lecturer observed that while the recorded lectures allowed students choices 
that could be beneficial, some students chose not to attend lectures with the intention of 
viewing them later, unfortunately later never arrived! Although there is a realistic concern 
that some students are especially vulnerable to missing material covered in lectures, we have 
no knowledge of the extent to which they viewed the recorded lectures, or any way of 
measuring what effect this may have on their results. As was discussed in section 3.2, this 
may simply reflect their learning preferences, or at least their individual circumstances. 

On the positive side for staff, there is the suggestion that the nature of the technology 
encourages good presentation practice, as lecturers are forced into considering issues 
previously possibly ignored, e.g. care needs to be taken with preparation of slides and writing 
during lectures, and repeating student’s questions certainly ensures that the question has been 
correctly interpreted. There is an opportunity for classroom lectures to become more like 
tutorials, with lecturers highlighting particular points, and leaving students to review lectures 
recorded in previous courses themselves. In addition, although this has yet to be verified by 
way of any statistical study, there was evidence in particular exam questions of increased 
understanding of lecture material, especially those questions with a direct connection to what 
was presented in lectures. It certainly seemed that performance on such questions was above 
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that of previous years. Bonnington noted as well that student evaluation scores of his 
lecturing increased dramatically in many categories. For example, the mean in the effective 
provision of resources category increased from 7.67 to 9.17 (calculated on a Likert Scale of 
responses ranging from Strongly Disagree to Strongly Agree), while stimulation of interest 
increased from 7.21 to 8.96. There is also an indication that the recorded lectures encourage 
independence in students. One course-coordinator observed that ‘a lot fewer students are now 
knocking on my door to get notes or ask questions. They are traditionally a very demanding 
group who need a lot of help, but are now using Cecil and downloading the notes 
themselves’. Although certainly not sufficient justification for introducing the technology, the 
same lecturer noted the positive spin-off that ‘students see us as being up to date with the 
latest technology available and hence have a very positive image of our Mathematics 
Department’. 

The following excerpt from a lecturer’s departmental report after their semester one 2007 
teaching provides a useful and balanced insight into their experiences with the tablet and 
recorded lectures: 

I felt that, after some practice, I was lecturing at much the same standard as usual, with the advantage 
of standing facing the students all the time (with the tablet on the lectern), rather than having to turn 
from the board or raise my head from the document camera.   And I did not have to rub out the 
blackboard, while still having the same freedom to write given by a blackboard.   The pages are a little 
narrow, but a bigger tablet will not translate into a bigger screen for the students, and I have become 
accustomed to the narrower space. I think I also lectured somewhat faster, having the security of 
knowing that most students printed the lecture notes or looked at these later if they missed something 
important. 

In summary, the overall impression from staff was that while using the tablet could be 
frustrating and there is a definite need to resolve several issues, the generally positive 
impressions of students (as is described in the next section), along with many individual 
benefits they experienced in their teaching certainly warrant continuing to develop its use.  

5. Student Feedback 

All the studies reviewed in the earlier discussion [1, 2, 3, 4], and all of the classes using 
the tablet technology in the Auckland project reported largely positive feedback from 
students, although there is as yet no concrete data that demonstrate improved learning. In the 
first trial at Auckland, no formal evaluation was conducted, but feedback was sought via 
email. The 30 students in this third-year class (with almost 2/3 EAL) were extremely 
supportive and pleasantly surprised with how effectively the new technology was 
implemented. Early in the trial, one student emailed totally unsolicited comments saying ‘I’m 
just emailing to say how excited I am about this new system and am already finding it 
useful….’ and ‘…I hope once everyone is used to the system each lecture will be recorded 
and uploaded from start to finish. It's absolutely fantastic - keep it up’. Positive comments 
received after the course included ‘This is my first A+ in maths…it was all because of the 
recordings’, ‘I like the way that we can download the whole lecture and listen to it again, 
especially that since English is my 2nd language’ and ‘I think all courses in the University 
should follow the same route and style of teaching’. The feedback did suggest that some 
students felt uncomfortable asking questions when the lecture is recorded, even though their 
voices could not be heard on the recordings, and a worry that the recordings may lead to 
fewer formal lectures and a lack of social interaction, especially for students not attending 
lectures in favour of the recording.  

Statistics [4] gained a surprisingly large 680 responses to a voluntary request for feedback at 
the end of their first screen recording trial in semester two, 2006. 53% of students said they 
found the screen recording useful at revision time, while 58% said they used screen 
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recordings to play (and replay) any concepts with which they had difficulty. 66% of 
respondents who had missed some lectures reported that they used the screen recordings to 
catch up and to hear virtually exactly what they would have heard had they attended class. 
While most feedback was positive, they received 12 complaints about slow download speeds, 
and a few comments about poor sound quality, technical issues which they hope to address. 
They note with concern that 24% of respondents appeared to use the screen recordings 
instead of attending class, warning that this is an unintentional outcome when they state that 
‘we do not wish to discourage students from attending class when there is a very real benefit 
in them doing so’ [4]. They also describe strong support for one innovative use of the 
technology when they provided students with a screen recording showing a step-by-step run 
through of a previous semester test by one of the lecturers as an aid to test revision. However, 
a mathematics lecturer reports that when she tried to emulate this her recording was ‘very 
flat, as I needed the adrenaline that flows when lecturing’.  

Both first-year courses using the screen recording in semester one 2007 at Auckland reported 
highly positive feedback from students both in weekly reflections and in open responses to 
the formal evaluation. The surveys include the opportunity for students to write open-ended 
comments about “What was most helpful for your learning?”, and “What improvements 
would you like to see?” As is common with open-ended items, most students choose to write 
nothing here. Despite this, the recorded lectures received several comments including 
’recordings and Cecil are excellent’, ‘love the idea that lectures are online’, and “I have found 
the recordings of the lectures, the diagrams and the examples useful in helping me learn 
maths better’. The only comment about improvements mentioned the quality of the 
recordings, but even then the student noted that this was IT-related. The principal lecturer of 
the other first year course at Auckland observed that: 

The recorded lectures are certainly extremely popular.  In the recent…course evaluation, they got more 
mentions in answer to “what has helped me to learn in this course” than even the tutorials, which are 
usually mentioned most. Many students who attended the lectures made a practice of downloading the 
notes later in the day and reviewing them to check their understanding of the lecture. Where they did 
not understand, they then listened to the appropriate section of the lecture again. Students are now 
using the recordings again as part of their exam revision.  

The formal university student evaluation of one first-year course also sought students’ 
response to the statement “The availability of recorded lectures in this course helped me 
learn”. One lecture stream had a response of 8.26 (44 responses from 81 enrolments, 
maximum possible is 10, calculated on a Likert Scale of responses ranging from Strongly 
Disagree to Strongly Agree), with 82% of students indicating “Agree” (A) or “Strongly 
Agree” (SA) to this statement; others were similar. There was a surprising result from another 
stream of the same course, taught at a different campus, where the tablet was not used in 
lectures. Many of these students clearly accessed the online lectures from the other stream, 
and agreed that this helped them a lot, even though the recordings were of a different lecturer 
to their own (30% A+SA, 40% Neutral). Comments included ‘the video lectures being 
available (helped me learn). I could go over them more slowly’, and ‘…the video lectures on-
line helped me, when you don’t understand the lecture you can look at it again’.  

The reference to “video’ in these comments is interesting, as it indicates that when the 
advantage of the association of the playback with previous lecture attendance is removed, the 
distinction between screen recording and pre-recorded lecture using video-technology is not 
clear. This is probably similar for distance students: one of the lecturers in the Auckland trial 
and the MathsOnline Project [3] noted their students found recorded lectures very beneficial. 
While playback of the screen recordings and downloading the smaller sized files is certainly 
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easier, perhaps the quality concerns may be greater on the screen recordings (e.g. handwriting 
on the tablet) than a professionally produced studio video-recording?  

Similar responses to those of the Auckland students were found in the studies reviewed 
earlier. In [1], 92 % of the 65 participating students agreed that “its great to have the 
computer-generated lecture notes on the web-site, while 100 % of the 35 respondents to a 
survey in [2] (out of 65 in the course) agreed that they found the tablet PC a reasonably useful 
learning resource. In a survey of students in the MathOnline project, 104 students stated they 
preferred the use of the tablet over the blackboard, although another 12 did prefer the 
blackboard, believing the technology was “distracting” [3].The same survey posed the 
scenario to students that if they had free access to all the software and hardware used in the 
course over the internet, with full recording of the lectures using screen recordings, would 
they still choose to regularly attend lectures? 106 students said yes, 8 said no. Most of the 
“yes” responses cited student interaction and social factors as their single most important 
reason, but of course whether all these students would in fact attend is not proven!  All three 
studies noted factors such as increased visibility, the ability to integrate other technologies 
(e.g. graphics packages), and the ability to review worked examples step by step as 
significant benefits of the tablet and screen recording technology. 

Loch [1] does however suggest that it is possible that much of the positive student feedback 
reflects only students’ perception of the delivery of course material, as opposed to any 
discernible learning benefits. Even if this were so, most teachers would agree that positive 
student perceptions usually translate into better learning outcomes, and in any case, it is clear 
from the results shown here that there is strong student support for continued development 
and use of this technology.  

6. Summary and Future Directions 

This paper has given an extensive report on the history and current status of the use of 
tablet technology to deliver and record live lectures in mathematics courses at The University 
of Auckland. It has provided evidence that strongly endorses the continued use of this 
technology. It is well supported by both staff and students, with many potential benefits 
identified. We anticipate that many of the difficulties encountered in the trial, especially those 
of a practical or technological nature can be addressed with little difficulty in future, and that 
concerns about increased demands on teaching staff in particular will diminish as experience 
and the availability of reusable resources increase. Some reservations remain about lecture 
attendance in particular, but this study provides a firm basis for designing a suitable study 
that can ask appropriate questions to examine this and other pedagogical issues more 
critically in future.  

There is potential for many additional benefits in distance learning and other remote 
educational areas. One obvious benefit of the technology suggested by the authors of [3] is in 
facilitating group work between distance learners, who can interact via the internet using 
tablets. All those involved in the study see definite advantages in off-campus students being 
able to see and hear what is going on in lectures. The small size of the files means that users 
with poor Internet connections can access them from a central source on, for example a 
memory stick or CD. As noted earlier, a whole semester’s worth of lectures can be stored on 
one CD providing access to students from more disadvantaged areas. One lecturer observes 
that ‘I think it should be possible to grow the extramural numbers using this system, as it no 
longer restricts the course to those able to understand well mainly from the written word’. 
Another lecturer sees definite potential for schools involved in a new outreach initiative with 
Auckland University. The technology is relatively inexpensive, and could facilitate 
interaction between mathematics teachers in schools and research mathematicians at the 
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university, allowing teachers to postulate questions and work through and record lecturers’ 
responses. 

Another area that has already been tested with great success at Auckland is the use of tablets 
as a virtual whiteboard in video-conferencing. Auckland has been developing the use of 
AccessGrid technology in videoconferencing between research groups. On several occasions, 
participants in mathematics conferences have used the tablet as a means of postulating and 
commenting on each other’s ideas. Examples can be sketched on the tablet at one end, and 
researchers at the other can interact directly with what’s been written, at the same time 
watching and listening to the participants as they carry out their actions. The new facility to 
save the resulting discussion and review it later is regarded by those who have used it as a 
very useful development. Screen recordings with audio commentary could also be very 
effectively used in research interviews instead of just audiotapes, allowing the links between 
what’s spoken and what’s written to be more easily established and transcribed. This is 
especially important in mathematics education research interviews, where examples are often 
used to illustrate what is being discussed. 

A suitable conclusion to this discussion is provided by one lecturer in the Auckland trial, who 
at the end of her 2007 semester one report frankly observes that ‘when everything goes well 
the tablet is a great idea, but it has limitations and (it) needs to be improved to be really 
effective’. 
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A look about number theory 
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Abstract 

Young people enjoy the recent influx of new technologies everyday in both communication 
worlds with Internet, mobile phones and digital libraries and recreational worlds with digital 
cameras, CD, DVD, MP3, MP4, and iPods.  In fact they probably cannot imagine life without 
them.  They are completely ignorant of the mathematical theory that lies behind these 
technologies, Elementary Theory of Numbers.  Educators should seize this prospect to use 
this enthusiasm and readymade motivation for these technologies to connect mathematical 
theory with relevant 'close to their hearts' applications.  This is a golden opportunity of 
teaching a branch of mathematics that is often only briefly mentioned if at all on the 
curriculum.  Mathematics and in particular the Elementary Theory of Numbers are the 
foundations of most information communication technologies.  Compression of Data, the 
Code and the Cryptography are obtained by the application of concepts and methods of 
Elementary Theory of Numbers.  This paper will show the current work using these 
connections carried out in the Facultad Regional Paraná de la Universidad Tecnológica 
Nacional, which is part of a Project of Investigation Is this a particular project?  
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Supporting students by knowing them: timely and 
personal interventions through an electronic learning log 
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Abstract 

Student Progress Files and their incorporated element of PDP (Personal Development 
Planning) have become an established part of the HE scene. The Mathematical Sciences are 
not immune from this development. It is widely recognised that for students in higher 
education, personal development planning is a useful and necessary activity to help them to 
become more effective and independent learners.  

There are two particularly interesting features. One is that any work on a progress file should 
be embedded in the student's main area of study, and that therefore subject academics need to 
be involved; the other is that the Progress File should include a means by which students can 
monitor, build and reflect upon their personal development. This paper describes the 
implementation of the student portfolio element - delivered and managed by a web-based 
system developed at SHU. At SHU progress files in Mathematics are assessed at regular 
intervals through the course, and some early results of this process are reported.  

Assessment of the PF seems to be critically important in getting students to engage with the 
process. Embedding this within a particular module seems to be working well, and students 
accept that the skills being assessed and the whole reflective process are of importance, both 
to them as mathematicians (where communication skills are traditionally of secondary 
importance) and as future employees. 
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Investigation of completion rates of engineering students 

ROSS H CUTHBERT* and HELEN MACGILLIVRAY 
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The 2002 first year engineering cohort completion rates were investigated to the end of 2006.  About 20% of 
these students actually graduated from engineering during this time and approximately  60% had discontinued 
the course altogether. A support program (QUTMAC) is run along side the mathematics units in the first year.  
Students who used this service were twice as likely to complete their course compared to those who did not.  

Keywords: Engineering, Completion rates, mathematics support, retention.  

1 Introduction 

The issue of completion rates and retention of students at tertiary level has been on 
going for decades. As Tomkinson et al [1] says of the UK ‘With wastage rates in science and 
engineering often in excess of 20%, for many of us the issue of student retention is of future 
viability. For others the main issue is of the human cost of so many students missing out on 
an opportunity’.  In the United States colleges of engineering are finding that they lose up to 
50% of engineering students due mostly to the challenges of the first two years, with women 
more likely to stay within the course than men [2]. There is a tension between government 
pressure to allow more students the opportunity of tertiary education and the reduction in 
proportions of quality students who are really attracted to the university courses.  To 
accommodate these tensions many institutions have started programs of learning support at 
either the local course level or on some case university wide learning support centres or as in 
the case of the UK Centres of Excellence across institutions and funded by government, eg 
Sigma: The UK’s Centre for Excellence in Teaching and Learning in Mathematics and 
Statistics Support, see [3]. 

All students who are enrolled in an Engineering Degree are required to take a unit of 
Engineering Mathematics in the first Semester.  These units are designed to help the students 
with the transition from high school mathematics to the mathematics that they will need in 
their future units of engineering.  In Queensland the secondary curriculum allows students to 
do up to two subjects in mathematics.  For engineering students the appropriate subjects are 
Mathematics B and Mathematics C. About half of the students entering engineering have 
completed both Maths B and Maths C, the other students have completed Maths B only or 
enter with some other assumed mathematics background. 

Students with Maths B only, do the Engineering Maths 1B (MAB180), while those who have 
both Maths B and C enter the Engineering Maths 1A (MAB131).  The MAB131 is more in 
depth mathematically than MAB180 as it takes into account the prior experience these 
students bring having done Maths C in school. 

This paper considers those students who entered engineering in Semester 1 2002 and explores 
what has happened to them in their course since then.  Students that are in a regular full time 
degree program should have completed their engineering degree by the end of 2005.  
Students in a full time double degree program should have finished at the end of 2006.  Some 
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students decide in the first semester that engineering was not the most appropriate career 
choice for them and discontinue the program.  Others discontinue at later stages of the 
program, while some students change to another type of engineering speciality.  

It was in 2002 that the Queensland University of Technology’s Maths Access Centre 
(QUTMAC) commenced operation, see [4]. With a modest annual budget and extensive in-
kind support from the School of Mathematical Sciences, the Centre has had far-reaching 
impact on student learning at QUT.  Despite its youth and limited budget it is rapidly 
becoming a leading model of university-wide support in mathematics and statistics learning, 
helping undergraduates, postgraduates and staff across disciplines, and with established UK 
linkages. 

Engineering courses are highly vulnerable to diversities or weaknesses in mathematics 
backgrounds because these courses require the widest variety of both specific and generic 
mathematical skills as quickly as possible. Mathematical thinking is the lifeblood of 
engineering, feeding its full range of skills, from the most creative to the most technological 
and theoretical. This causes a raft of difficulties for engineering teaching staff and curriculum 
designers. Many engineers, both academic and professional, are aware of the many roles of 
mathematical thinking in engineering, but for many others, mathematical thinking has 
become so much a part of them that they have forgotten how they acquired it. The increasing 
diversity of mathematical abilities and backgrounds amongst engineering students, and the 
mathematical needs of modern engineering within course structures that tend to have the least 
flexibility where flexibility is most needed, is a formidable combination of challenges for all 
staff involved in teaching and supporting engineering students. The QUTMAC has a deep 
understanding of all these challenges for engineering students and staff, and its data and 
analysis provide much valuable information, see [5] and [6].  

Operational objectives of the Centre include: 

support for skills and understanding, and in developing student confidence and lifelong 
learning across all mathematics and statistics service and core units 

provision and fostering of an environment of partnership and openness in mathematical 
learning – within and between all student cohorts and staff 

development of diagnostic testing and associated support strategies in any unit in which 
student difficulties in basic mathematics are causing problems, or have the potential to cause 
significant difficulties in later units 

consultation, collaboration, advice and support for staff on learning and teaching matters 
involving quantitative skills 

data collection and analysis on quantitative aspects of learning and teaching 

pursuit of scholarship of teaching in tertiary learning that involves mathematical and 
statistical thinking across disciplines. 

Components of the QUTMAC’s program include: 

• weekly student-driven, unit-specific support sessions  

• a drop-in centre/student work area with extensive specific-purpose paper resources,     
wireless facilities, and a schedule of duty tutors 

• sessions on mathematical problem-tackling, including test/exam preparation    

• roles in mentored tutor training 
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• development and implementation of diagnostic tests and associated student support in 
units in Science, Nursing, Engineering and Information Technology courses  

• data analysis of student performance and progression with respect to a range of 
possible predictors, and associated advice and strategies for staff and management 

• statistical thinking symposia for postgraduate students across all disciplines 

• development and implementation of data collection and analysis strategies for 
monitoring and evaluation of QUTMAC programs 

The features that are relevant to this paper are those aspects that relate to engineering 
programs, that is the weekly support session and the exam preparation workshops.   

Weekly support sessions:  These are unit-specific, optional but scheduled sessions driven by 
student questions and requests, that focus on building students’ confidence, self-help and 
study skills, and on tackling their holes and weaknesses in the underpinning mathematical 
concepts and skills needed for current and future learning. The QUTMAC does not provide 
units for students without the official assumed knowledge for their program of study because 
such prerequisites are available in units in which students can enroll. The purpose of the 
QUTMAC’s support sessions is to help students who officially have the prerequisite 
background for their program. There are many reasons why students with the official 
assumed background find that their skills and operational knowledge are insufficient; these 
range from inadequate identification of skills and knowledge that are assumed to the many 
problems and challenges described in the introductory overview. 

Although they are optional, the support sessions are scheduled to ensure that students’ 
timetables allow their inclusion in appropriate programs of study. The nature of the sessions 
varies from unit to unit, and the sessions adapt in response to students’ needs. The principles, 
however, are always the same - to provide a supportive, friendly, open environment in which 
no question or difficulty is too small, and which provides the utmost encouragement for 
students to own their learning and to turn weaknesses into opportunities to learn and to grow.  

Up to three weekly support sessions were provided in each engineering mathematics unit 
MAB180 and MAB131.   

Exam preparation workshops:  These are specific to first year Engineering Mathematics units 
and a small number of other units. They are held at key stages during the semester and aim to 
help students develop study and problem-solving skills. For engineering students, similarly to 
the support sessions, these have been held since 2002 and have become increasingly popular, 
often requiring extra repeated sessions to meet demand. These typically would last for one 
day with 3 two hour sessions.  Again these are student driven with the tutor responding to the 
needs of the students.  

2 The Data 

The information on these students was provided by QUT Student records System 
‘Calista’ by the Senior Client Services Officer, Student Systems – SBS.  The records 
indicated all students that had discontinued the course including those who may have 
changed courses within the engineering faculty.  A search was done on the individual records 
of all students who were recorded as discontinued to determine whether they had changed to 
other courses within engineering, or changed to other courses within the university, or had 
left the university.  Table 1 provides a summary of these findings including the number of 
discontinued students who did the engineering mathematics units MAB180 or MAB131 and 
also indicates students that discontinued during the mathematics units.  
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Table 1: Destination of discontinued students 

MAB180 MAB131 All Eng. 
Students 

 

Completed 
MAB180 

Discont-
inued 
MAB180 

Total 
Discont
-inued 

Completed 
MAB131 

Discont-
inued 
MAB131 

Total 
Discont
-inued 

Discont- 
inued 

Left 
QUT 77 48 125 63 22 85 210 

Diff 
Eng 
course 

12 2 14 18 2 20 34 

Diff 
Course 
QUT 

23 10 33 23 2 25 58 

total 112 60 172 104 26 130 302 

Some students have left QUT completely (Left QUT)  (42%), others have changed to a 
different strand within engineering (Diff Eng course) (7%), while others have remained at 
QUT but changed to a non-engineering  degree (Diff Course QUT) (11%).  The discontinued 
MAB180, MAB131 columns indicate students who officially left the course and the 
Engineering mathematics unit before the end of the semester 1 2002.  

Taking into account the above information, Table 2 provides data on the number of students 
entering the engineering degree program and the numbers and percentages of those who 
completed or discontinued by the end of 2006.  About 15% of students are still enrolled and 
this includes those who are part time, or have failed some units and need to repeat them. At 
the start of the course only about 10% enroll as part time and during the course an unknown 
number change to part time and some discontinue and return later.   

It is of concern to note that nearly 50% of students discontinue their engineering program, 
this is to be compared with the 20% retention rate in the UK [1].  This is higher for those who 
did MAB180 (58%) while for those who did MAB131 it is close to 42%. 

Another interesting result from this data is the low number of students that complete their 
degree within the 5 years. Only 22% of MAB180 students have completed their 4 year degree 
in 5 years, while for those who enroll in MAB131 it is higher at about 36%. 

It is of interest to know if students’ grades in Engineering Mathematics have some effect on 
their completion or discontinuation.  Table 3 provides information on Engineering grades and 
completion and discontinuation by the end of 2006.  The scale of grade is 1 to 7 with 7 being 
the highest and greater than 4 a pass, 3 is a conceded pass.  A grade of W or K indicates 
either a withdrawal from or incompletion of the unit. 
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Table 2.  Enrolments and Completion or discontinuation of course 

Unit Enrolled 
2002 

Completed 
before the end 

of  2006 

% completed 
their course by 
the end of 2006 

Discontinued by 
end of  2006 % discontinued 

MAB180 

(single degree) 

254 58 22.83% 148 58.27% 

MAB180 (double 
degree) 

22 5 22.73% 8 36.36% 

MAB180  (all) 276 63 22.83% 156 56.52% 

MAB131 (single 
degree) 

215 80 37.21% 92 42.79% 

MAB131 (double 
degree)  

46 14 30.43% 18 39.13% 

MAB131 (all) 261 94 36.02% 110 42.15% 

All Engineering 537 157 29.24% 266 49.53% 

 
Table 3:  By grade in mathematics unit completed/discontinued (Includes double degree) 

 

MAB180 2002 MAB131 2002 
Grade 

enrolled % Comp % Discont enrolled % Comp % Discont 

W,K 68 4.41% 92.65% 43 20.93% 55.81% 

1 14 0.00% 100.00% 11 0.00% 81.82% 

2 21 0.00% 76.19% 30 3.33% 93.33% 

3 13 7.69% 84.62% 25 32.00% 48.00% 

4 53 15.09% 58.49% 43 27.91% 53.49% 

5 39 41.03% 38.46% 53 41.51% 37.74% 

6 39 46.15% 33.33% 25 76.00% 20.00% 

7 29 58.62% 31.03% 31 74.19% 16.13% 

all 276 22.83% 56.52% 261 36.02% 42.15%% 

 

Of the students who received a grade of 7, the percentage of MAB180 who discontinued is 
nearly twice that of MAB131.  If a student does not pass MAB180 it is unlikely that they will 
complete the course within 5 years, and most of them will discontinue the course.  It is only 
slightly better for those students who fail MAB131.  

2.1 Data from the QUTMAC 

The purpose of this section of the paper is to see if those students who used the QUTMAC 
programs were more likely or not to complete or discontinue their course as compared to the 
total cohort described above.  
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MAB180 

Seventy engineering students in MAB180 used at least one component of the QUTMAC 
programs in semester 1 2002. Of these 70, 32 used the maths support sessions and 63 used 
the exam workshops,  and 25 used both.  That is, 7 students who used the support session 
never used the Exam workshops and 38 students who came to the exam workshops never 
used the support sessions. At the end of 2006, 30 of these 70 students had completed their 
engineering course, 6 were still enrolled, 18 have left QUT, 6 transferred to other QUT 
courses, and 3 transferred to other Engineering courses.  

MAB131 

One hundred and one engineering students used at least one component of the QUTMAC 
program. Of these 101 students 88 used the maths support sessions, 95 used the exam 
workshops and 82 used both.  That is, 6 students who used the support session never used the 
Exam workshops and 13 students who came to the exam workshops never used the support 
sessions.  Nine of the 101 students are still enrolled at the end of 2006, and 55 had completed 
their engineering course.  14 have left QUT, 5 transferred to other QUT courses, 11 
transferred to other Engineering courses.  

Table 4 summarises the above information which can be compared with the data in Table 2.  

 

Table 4: Summary of Engineering students that used the MAC programs. 

Unit 
No of 
MAC 
users 

Completed 
before the 

end of  
2006 

% completed 
Discontinued 

by end of  
2006 

% 
discontinued 

MAB180 70 30 42.86% 24 34.29% 

MAB131  101 55 54.46% 19 18.81% 

All 
Engineering 171 85 49.71% 43 25.15% 

 

2.2  Discussion 

In comparing Tables 2 and 4 we see that students that use the QUTMAC either in the support 
sessions or the exam workshops are nearly twice as likely to complete the course as the whole 
cohort and half as likely to discontinue engineering.  Because the QUTMAC programs are 
voluntary, the students self-selected. That is they knew that they had gaps in their 
mathematical knowledge and skills and made an effort to use the QUTMAC to fill those 
gaps.  Such students are more likely to complete the course than those who had gaps and 
could not see them and/or did not bother to use the resources that were available to them.  

3. Conclusion 

Students who commence engineering come with a range of prior learning experiences that 
impact on the type of mathematics program that they can most appropriately engage in at 
tertiary level.  Those who come with only the core mathematics (Maths B) or equivalent from 
high school are directed to MAB180. These students have lower completion rates and higher 
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discontinuation rates than those students who come with the advanced mathematics (Math 
B&C) and enter into MAB131.   

Students who choose to do the optional programs offered by the QUTMAC have improved 
completion rates and less discontinuation than the cohort as a whole regardless of 
mathematics unit studied.  
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‘Life is just too complex!’ Let’s entwine mathematics 
learning with complex theory! 
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 ‘Life is just too complex!’ is uttered many times and funnily enough that is the way life ought to be.  The word 
‘complex’ originates from Classical Latin word ‘complexe’ that translates ‘bend, curve, turn, fold, twine, twist, 
interweave, and weave’.  Life proceeds via a pathway that weaves through exchanges with people and 
environment defining the personality. Some students studying the compulsory mathematics unit feel it is a case 
of survival, evolving, and adapting to complete the course.  This sentiment holds all the attributes of Complexity 
Theory so why not entwine and interweave it with mathematical learning.  In recent years, group work has taken 
a more prominent role in an attempt to resurrect mathematical interest and creativity.  Tutorials questions are 
designed to maximise understanding through interactions with content and fellow students rather than just 
complete a set amount of selected exercises.    Students expressed a greater interest in mathematics’ group work 
after the course which differed from their prior expectations and experiences.  Students’ remarks showed that an 
interest in mathematics had been stirred and all achieved by using ‘complex’ styled learning techniques. Interest 
and enthusiasm will help ensure that so-called ‘penny has dropped’ moments materialise more often leading to a 
new appreciation of mathematics. 
 
Keywords: Group work, Complexity Theory, First year service mathematics course  

1 Introduction 
‘In the company of friends, writers can discuss their books, economists the state of the 
economy, lawyers their latest cases, and businessmen their latest acquisitions, but 
mathematicians cannot discuss their mathematics at all. And the more profound their work, 
the less understandable it is.’          Adler, Alfred (1870 – 1937)   

The essence of this quote is still true in the 21st century in the minds of most first year 
students taking the compulsory mathematics unit.  ‘Don’t bother with the details just give me 
the answer’ is often heard and accepted as the norm in mathematics service units.  There is no 
enthusiasm for mathematics from students; the service unit is seen as a chore that must be 
done.  Exuberance and passion are sentiments more commonly found on a football field than 
in a mathematics class.  This qualitative paper will show, by exploring students’ recollections 
and lecturer’s observations, how Complexity Theory may be utilised in the transformation of 
mathematical ambivalence to a more positive attitude towards mathematics.  Group work and 
an innovative style of tutorial exercises may be the pathway where students can regain the 
thrill of mathematics.  The use of complexity theory in association with mathematics teaching 
is emerging albeit slowly.  The world today is ever evolving and one has to appreciate and 
live fully within the complex systems [1]. 

2 Complexity Theory 

As mathematics educators are aware their courses are never the most popular from 
secondary to tertiary education.  What a turnaround if being complex could aid students to 
enjoy and understand mathematics better.  A definition of complexity theory is: Critically 
interacting components self-organise to form potentially evolving structures exhibiting a 
hierarchy of emergent system properties ‘[2-3]’.  Complex systems have a simple set of 
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starting conditions that create more elaborate and unpredictable outcomes ‘[4]’.  The 
elements of such systems can influence and be influenced by others in the system and so 
produce new states.  Complex systems are constantly reacting to influences, adapting via 
feedback, and reorganising to become more connected.  The occurrence of this connection is 
certain but the outcome of the interaction is unpredictable.  Complexity theory can be 
incorporated in both tutorial activities and organisation so that mathematical learning may 
behave like a complex system. Tutorial exercises have a basic blueprint of many simple clues 
that combine to form a solution rather than just one direct question.  Each clue can identify 
mathematical strengths and weaknesses sending students in numerous directions and 
hopefully to a final solution with understanding.  The small groups provide an environment 
for interaction, feedback and mathematical inspiration to occur.  

3 Characteristics of Complex systems 

Complexity is never far away from reality; thoughts are often spontaneous and 
unpredictable connecting to other thoughts producing more reflections.  Major characteristics 
of complex systems include connectedness and unspecified number of parts, self-
organisation, order without control, communication and relationships, non-linear networks 
and unpredictability, continuous feedback with continual adaptation and emergence of new 
states.  These characteristics of complexity theory are integrated into tutorials by the group 
work environment and evoking curiosity through the presentation of the questions [5].   
Tutorials have a game (or challenge) ingredient accompanied with brief interludes of revision 
when needed.    The challenges range from matching cards of similar algebraic forms of a 
derivative to writing hints on the board about a topic.  This atmosphere hopes to enhance 
mathematical comprehension and appreciation.  My tutorials may be described as a series of 
‘many little unpredictable mathematical events’ with the following elements of complex 
system: 

a) Connectedness and unspecified number of parts 

Students, though independent learners, are all attending class together to gain more 
knowledge of mathematics.  The universal aspiration of obtaining a pass in this compulsory 
mathematics unit fulfils the element of connectedness.  Student numbers vary from group to 
group and week to week so interactions in each tutorial differ in both amount and content.   If 
learning is viewed as an interaction of an interaction producing a change of the knowledge 
base then in mathematics class complexity theory begins to make sense. ‘[6]’.  The tutorial 
questions are structured in many parts so that students may really feel the progression of 
understanding at each stage. Cards containing lines from a solution are handed to the students 
to rearrange into a correct order.   This works well with a variety of topics from applied 
problems to simple procedural applications.   

b) Self-organisation and order without control 

Students convene groups and arrangements within groups transform without outside 
control choosing the most suitable environment for learning.  Tutorial exercises are designed 
so they can be adapted to any order to develop skills by group or individual.  Information can 
be discussed in the group then individually put to paper and later, hopefully, into a lasting 
memory in the mind. The organisation of material proves difficult for a proportion of 
students.  Tutorial problems where students select cards with equivalent algebraic expressions 
associated with derivatives, integrals or simple fractions for example 

c) Communication and relationships   

Students need support structures in mathematics to grow in mathematical knowledge.  
Peer discussion promotes proliferation of ideas, strategies and topic comprehension.  Both 
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individual students and the group entity collaborate to form bonds with each other as people, 
with the tutor and most importantly with mathematics.  All of this may not ever eventuate in 
other circumstance where similar exercises are set directly from the textbook each week ‘[7]’.  
Tutorial questions attempt to show and communicate the relationship between concepts by 
creating pathways within the problem.  Tutorials may take a reverse approach where entire 
solutions are given and students have to offer reasons for the method.  This addresses the 
issue of understanding rather than mechanics of problems.  This is an important learning tool. 

d) Non-linear networks and unpredictability 

Each group interacts with each other producing a forum of ideas with outcomes that 
release more debate at all levels ‘[8]’.  Independent of subject matter, students’ thoughts are 
often most intriguing to experts and peers alike adding new perspectives and insights to how 
information has been translated from instruction to students’ brains.  There is no schemata 
applied, all activities happen by impulse often through unconnected cognitive pathways 
mirroring a complex system.   The understanding of more intricate problems is not always the 
result of scaffolding of simpler problems, sometimes leaps and bounds in comprehension 
happen spontaneously.  The so-called ‘penny has dropped’ moment can materialise at any 
time with any type of interaction or words.   

e) Continuous feedback and continual adaptation and emergence of new states 

Innovative discussion provides sources of vital feedback, often by students using 
examples with language that is attractive and comprehensible to fellow students.  Listening, 
inputting and assimilating contributions by group members incessantly modify the dynamics 
of groups and individual members ‘[9]’.  In some way, no matter how minuscule, students 
emerge with new knowledge and techniques with every discourse.  The tutorial problems are 
designed so students may practice each stage in context as much or as little as desired.  The 
constant reviewing of material builds knowledge in all areas not just the topic being tested.  
Students adapt and modify information stored in memory with each new interaction. A 
tutorial may consist of several linear programming problems divided into stages such as; 
finding inequalities, graphing inequalities, shading feasible area and the optimal solution.  
Students can stay at any stage until they feel confident to proceed. 

4 Methodology 

In 2007, current students experienced group work only in tutorials whilst group work 
played a major role in lectures and tutorials for the whole year for former students.  107 
emails (see Appendix A) were sent to former students who were taught in years, 2005 and 
2006, seeking responses about group work, whilst 30 current students answered during class.  
The participants were students, mainly international, studying foundation mathematics as a 
requirement for entrance to first year university courses.  The course provides a core set of 
topics mainly algebraic and statistical content suitable for entry to nursing, architecture, 
commerce and finance.  Additional topics in calculus, vectors and trigonometry are taught to 
students entering sciences such as pharmacy, occupational therapy, physiotherapy and 
engineering.  The content is comparable to most first year service mathematics unit.  Lectures 
and tutorials integrate group work with problems of an innovative nature and format to 
promote active participation and discussion and thus create a complex scenario [10].  The 
following is an illustration of a typical tutorial exercise, this one involving quadratics. Six 
different graphs of quadratic functions along with relevant information on small strips of 
different coloured paper are given to the students. Examples of the graphs are shown in 
Figures 1 – 3 with figure 4 illustrating the relevant information 
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              Figure1              Figure 2                 Figure 3 
    
    

Sheet One Sheet Two Sheet Three 

  y = x2 – 6x– 7         y = x2 + 2x – 15 f(x) = x2 + 2x – 3 

Graph opens up because a is 
positive  

      The graph opens up     

     because a is positive 

The graph opens up because 
a is positive 

 x-intercepts are x = 7, and x 
= - 1 

 The vertex point is (-1, -16)  Vertex point is at (-1, -4) 

The y-intercept (0, -7)       Axis of symmetry x = - 1 Axis of symmetry is the line x 
= - 1 

The vertex point is (3, -16)        Cuts the line x=0 at 15   X-intercepts are at x = -3,  x 
= 1 

The axis of symmetry is x = 3  Cuts the line y =0 at -5 and 3 Y-intercept             (0, -3) 
Figure 4 

 

The aim of the tutorial is to link correct algebraic and graphical components of quadratic 
functions.  The task has a number of attributes of a complex system: each set of clues is 
connected to one graph, clues intermingle with each other, clues can be solved in any order, 
and each clue provides feedback with many unpredictable pathways to the final solution.  
Complex environments can be created via interactions with tutorial problems and fellow 
students.  This paper will relate the tenets of complexity theory to content, delivery and style 
of mathematics tutorial using observations during tutorials and students’ quotes. 

5 Results  

Problems encountered using e-mail as a medium are e-mails with multiple recipients 
being treated as junk mail or valid e-mail address no longer accessed by the student.  These 
cases could not be quantified.  Ten e-mails had invalid e-mail addresses.  65 completed 
questionnaires were received giving an overall response rate of 51.2%.  A consideration of 
response bias should be made since the responses were made directly to me with a self-
selection bias due to method of polling.  Table 1 shows the progression of students’ attitudes 
to group work before, during and after the course.  These responses to the questionnaire will 
be used to discuss the educational benefit to students’ understanding, interest and enjoyment 
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of mathematics and explain the attitude shift to group work.  This is expanded in the 
discussion section. 

 

 Attitudes to Group Work  

Time Positive Neutral Negative 

Before Course 28 16 21 

During course 40 10 15 

After  course 54 7 4 
Table 1 Survey responses from all students 

 

6 Discussion  

Complexity theory is relevant to all aspects of education from the practice of teaching, 
problems through to curriculum development ‘[11]’  Students are initially wary of group 
work with the usual concerns such as not all students will put the same amount of effort, 
communication problems, and working with unfamiliar people [12].  The majority of students 
had never experienced group work in mathematics tutorials.  Such activities often finish at 
primary or early high school level.  Mathematics is perceived by students to be learnt in 
relative isolation and hence file in to sit in rows at the first tutorial.  In students’ eyes, group 
work in mathematics at tertiary level, is somehow not an acceptable learning platform.  This 
was reflected with comments concerning feelings before starting group work in the course: 

No, I did not have any experience in group work in Mathematics before because in my 
country, we don’t have group work in mathematics subject, as we do it all on our own. 

Basically I hate group work 

Before the maths foundations course, I only had just one or two group works to do which I 
found out to be a bit boring I should say. 

My only concern was that people would be graded unfairly as some students may not put 
in the same amount of effort as others 

 I felt that it was not possible to do group work when it came to Mathematics due to the 
nature of the subject. However, I was not averse to the idea of doing group work itself 
because I had done some in other subjects before and find it to be enriching. 

You will never learn from group work.   

When I was in Mathematics Foundations course, I’m very concern on the group work 
because I’m afraid that it would drop me off from the Foundation and I don’t think it’s 
even useful. 

It is interesting how quickly they adapt and after only one or two tutorial sessions, groups are 
eagerly waiting at rearranged tables for mathematics problems.  Preconceived ideas and fears 
of the mechanics of group work can be diminished, once students experience carefully 
planned mathematical tutorial sessions.  The tutorial concerning quadratics will reflect, as a 
specific example for all tutorials, of the ambiance created by using complex ideas and group 
work.  The many facets of group work are illustrated by my observations of the “quadratics” 
tutorial.  Every interaction, whether it is student to student or students to topics, increases the 
knowledge base and has future use in a many varied situations ‘[13 -15]’.  My role facilitates 
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the flow of ideas and students’ involvement.  Here are descriptions of the three main 
strategies implemented, with no outside influence, by students during this tutorial:  

Group One selected a combination of individual and group effort; each student selected one 
equation to investigate algebraically by factorising, completing the square, and finding other 
useful features such as intersections.  Collaboration on how and when to use different 
algebraic techniques occurred when required.  They pooled all their ideas and workings to 
start the process of matching their calculated information with the original facts. Workings 
had to be interpreted algebraically and graphically in the context of quadratics.  All students 
were involved with the formation of clue sets.  Finally the reunion of graphs and clue sets 
happened though not always first time!   

Group Two used the whole group’s knowledge on one graph checking for co-ordinates, 
intersections and other features.  The next step was to fit pieces using facts that had been 
found and eliminating with further calculations unsuitable ones for the graph.  Each graph is 
completed before moving to the next one.  The debate was fierce with explanations for 
inclusion and exclusion of clues until finally all clues are in place. 

Group Three is reminiscent of playing Rubik’s Cube, completion looks far away then at the 
next twist it is solved.  The group chose one graph matching and attaching all obvious clues 
before proceeding to the next one.  After viewing all graphs, the process began again with 
unattached clues and individual graphs.  Attached and unattached clues traded places in a 
jigsaw-like effect until all clue sets are complete.  A mess of clues one second, then an 
ordered clue and graph set the next. 

In the learning environment of the ‘quadratics’ tutorial, as with other tutorials during 
semester, aspects of complexity theory are evident through both material content and contact 
with fellow classmates independent of adopted approaches.  Within each group, all students 
are actively taking part with individuals organised to complete tasks.  The overall final 
solution is the same albeit that material is organised and processed in different fashions and 
pathways.  This shows students the creative side of mathematics often hidden in textbook 
exercises.   The conversation is ubiquitous satisfying communication and self-organisation 
aspects.  Different ideas and concepts float in and out constantly being revised when 
solutions, calculations, and observations reveal more information.     

There is a plethora of suggestions provoking more thoughts, how and why these connect is 
not always clear.   

Observations of all groups clearly showed non-linear networks, and continuous feedback 
through many movements of knowledge, clues and students.  A number of students find 
learning in mathematics as many ‘penny has dropped’ moments where these events are as 
unpredictable as the reasons why they happen.  Tutorials are always accompanied with plenty 
of noise, activity and movement that is uncharacteristic of a ‘normal’ mathematics tutorial.  
This divergence was echoed in the sentiments expressed by students:   

Different to any other tutor that I met before, totally different. More interesting 

It is just different.  Well your class was fun you tried hard to teach students with many 
different methods, tried many different ways to teach  

Groups can start off in chaos, literally, with coloured papers, files and pens all over the table.  
Slowly during the tutorial recognisable progress emerges as order begins to be seen by groups 
and tutor.  The link between graphs and different forms of quadratic functions is promoted by 
a game-like investigation ‘[16-17]’. 
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Positive comments about the tutorial environment and content experienced during the 
semester relating the enjoyment and learning factors: 

Your style was more interactive with the students and it brought great interest towards the 
subject from me as a result. It was motivating and the time spent in class was not in any 
way boring. Yes it helped in the practical side of life. 

I believed that to excel in mathematics does not only limit to good marks and excellent 
mesmerizing of formulas. It is the way that the student is comfortable in learning, 
confident, and has a good sense in how the concept works. Therefore, I think it would be 
benefiting for the students when a different type of approach is used, as long as it helps to 
embrace the student’s ability in learning. 

Your style of teaching is good, not that boring, with some jokes....besides, activities in 
class also interesting nice and comfortable teaching style 

I feel you make us all feel involved and inspire us to work. You make the classroom 
environment very lively which I like about your classes  

Yours is much more lively and fun.  The group work which provided: really attract 
people’s attention and interest of mathematics. Really interesting. Like fun to enjoy. 
Excellent experience  

A minority of students, even though homework was set, still longed for endless exercises on 
the same topic to be completed in tutorial or at home.  Remarks such as:   

When I was in my country my maths teacher always gave us a lot of homework to do in 
tutorial class.  Doing homework every day 

Only teacher talk in class and students study by themselves  

It is too relaxed I beg for homework many students are unmotivated to study or work on 
mathematics without a tug or push from teacher 

Give some practice to solve the question together in class and give more homework 
or little test, so students have more chance to know more question and ready to 
face final exam. 

It can be difficult for students to adapt when the mindset is that learning can only take place 
by repetition so to alleviate these fears, time is allocated to more traditional exercises in some 
tutorials.  After many years of traditional ‘chalk and talk’ teaching, students worry with new 
teaching styles that they will miss ‘something’ without even knowing exactly what that 
‘something’ is.  Many students enjoy and appreciate the carefully planned tutorial sessions 
and lectures describing the experience with words such as ‘joy’ and ‘fun’ 

I enjoyed your style of teaching always a joy coming to your class.  The lectures are 
presented in an easy to comprehend format and I took a lot back at the end of each class. 

I passed her module only because of her guided teaching approach which I learnt so much 
from. 

The tutorials are intentionally planned to be unpredictable in style, content and delivery, so 
interactions with lecturer, mathematical content and peers may produce new mathematical 
knowledge and understanding.          

Frankly speaking, you make maths more interesting.  I was never interested in maths until 
you taught me last year.  You made it fun to study maths.  I guess most students last year 
enjoyed your lectures and tutorials.  You can attract students’ attention with that, well, 
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that's happened to me, and I think that was a great job since my grades in maths improved 
very very significantly.  

Your style of teaching is never boring, always expecting something fresh or interesting in 
every upcoming class. 

From my opinion, I guess the best studying style that I had before was in the maths class. I 
really can see the improvements from that, from a student that hate maths but now it turned 
me into a student that love maths. I seriously learn a lot from the studying environment that 
I had in the foundation classes.  

Your style was more interactive with the students and it brought great interest towards the 
subject from me as a result. It was motivating and the time spent in class was not in any 
way boring.  

7 Conclusion                                                                                                                                               

Learning in mathematics has a complex and non-linear portion that makes teaching in 
mathematics so random and intriguing.  Interaction with mathematics is important as it 
impinges on everyday life and there are times when communication involving mathematics, 
no matter how trivial, is required.  Carefully planned questions and activities entwined with 
group work enhance a more confident curiosity of mathematics as shown by students’ 
comments and shift in attitudes towards group work.  The combination of students, problems 
and delivery fashions a stage where the understanding of a concept may be as simple as; a 
different word in a sentence, a simple gesture, a quick sketch, little word from a fellow group 
member or a different voice.  All are possible when group work is the norm rather than an 
added extra and when the attributes of complex systems are recognised and utilised.  The 
tutorials are welcomed by students for the unpredictability of the format, for the interactions 
that have consequences far beyond the boundaries of the classroom and for the non-linear 
progression by leaps and bounds of knowledge.  Who would ever have predicted that a male 
student with a high distinction would find that group work helped with grocery shopping! 

Appendix A 

Gender    Year Foundations Mathematics course was taken       Course you are now 
undertaking  

Before taking the Mathematics Foundations course, had you experienced group work in 
mathematics tutorials?   If so, was it similar to that of Mathematics Foundations course? 

Before taking the Mathematics Foundations course, what were your feelings about group 
work?   

When you were taking the Mathematics Foundations course, what concerns did you have 
about group work?  At the time did you think the group work would be useful? 

After taking the Mathematics Foundations course, do you now feel that the group work 
helped your understanding of Mathematics?  Has the group work helped in other areas of 
your student life?  
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Abstract 
 

Studies of mathematics teaching and classroom learning, which are at the forefront of 
research on elementary and high school mathematics, are less prevalent at the tertiary level.  
Our purpose is to consider possible reasons for this state of affairs and to discuss relevant 
issues towards a viable research agenda for tertiary mathematics education.  
For example, we propose to discuss: 
- Teacher knowledge. Mathematics teachers at the university level are usually either 

graduate students or professional mathematicians. Can it be assumed that studies on 
teacher knowledge of mathematics, which are so widespread at the elementary and high 
school levels, are not relevant at this level? To what extent and why should pedagogical 
content knowledge at this level of teaching be addressed by research? How do tertiary 
teachers make their curriculum/textbook choices?  

- Teaching practices. Many universities have established teaching improvement units. 
How can this be related to professional development aimed at improving practice, which 
is a main concern in the agenda of primary and high school teaching? 

- Teaching and research. Many tertiary-level teachers do research in mathematics. What is 
the interaction, if at all, between the research component of their work and their teaching?  

- Classroom studies. Classroom management, classroom conversations and interactions 
(such as the production of mathematical arguments and counterarguments) are being 
intensively studied at the elementary and high school level as a main source of 
meaningful learning. Why would this be (or not be) a research topic worth pursuing at the 
university level? 

- Research paradigms. The two predominant theoretical and methodological paradigms in 
mathematics educational research are the cognitivist and the socio-cultural. It seems that 
cognitivism is the leading paradigm in research on learning advanced mathematics.  To 
what extent is this a general trend, and why? 

- Assessment. Should assessment in university-level mathematics courses be inherently 
different from its counterpart in elementary and high schools?  What would be the role of  
“alternative assessments”? 

- Multiculturalism. Mathematics education in elementary and high schools is concerned 
with issues of equity, inclusiveness and ethnomathematics. Why and how should this 
concern be addressed (or, alternatively, ignored) at the university level?  
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In 2005 first year engineering students at the University of Pretoria completed a mathematics diagnostic survey 
at the beginning of the year. The aim with the survey was to determine the students' entry level preparedness for 
calculus, as there is a growing concern regarding engineering students' mathematical ability. The mathematical 
content of the survey focuses on aspects in pre-calculus that can be regarded as 'must knows' for calculus. In this 
paper an overview of the content of the survey is given, the results of the 2005 implementation are analysed and 
compared with students' final school marks in mathematics. The data of two groups of students are considered. 
Analysis of results indicates that students in both groups lack the pre-calculus skills and ability that lecturers, 
presenting the first course in calculus, readily assume students should have. Of the 782 students, 90% performed 
below the anticipated 80% correct answers.  

 
Keywords: Calculus preparedness; Pre-calculus skills; Mathematics diagnostic survey 
2000 Mathematics Subject Classifications: 97D30; 97D40; 97D70; 97C90 

1 Background 

 There is a body of research on first year tertiary students' mathematical skills and the 
implications thereof for the learning and teaching of calculus. A sample of reported research 
includes studies by Bottomley, Hollebrands and Parry [1]; Carpenter and Hanna [2]; Ferrini-
Mundy and Gaudard [3]; Frith, Frith and Conradie [4]; Hooper [5] and Jourdan and Cretchley 
[6]. Inevitably, these studies are locally focused on specific students who come from a 
particular school system. It is envisaged that a forum like Delta ’07 can provide the 
opportunity to identify commonalities in students' perceived incompetence in mathematics at 
first year level and, more importantly, to discuss solutions regarding the learning and 
teaching of mathematics that may be applicable to a wider student body than in one's own 
institution.  

In South Africa, extensive changes have taken place in education since the mid 1990s. These 
include pedagogical and curriculum changes at school level and increasing differences 
between secondary and tertiary mathematics [7]. The question arises whether teachers at (all) 
school levels are equipped to deal with the demands of the new mathematics syllabus. In 
addition, the total effect of the changes regarding the mathematics curriculum will only be 
noticed when a generation of students has been educated in this manner. At time of writing, 
students who were educated according to the new mathematics curriculum have not yet 
entered tertiary study.  

Competence in mathematics is regarded as a key component for engineering study and 
eventually for the practice of engineering. All engineering disciplines at the University of 
Pretoria have the same compulsory mathematics modules in the first two years of study. The 
School of Engineering at the University of Pretoria offers a four year standard engineering 
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degree program which is regulated by the Engineering Council of South Africa, as well as an 
extended five year study programme. The purpose of the Five Year Study Programme 
(5YSP) is to create opportunities for students who have the potential to do engineering but 
who do not meet the entrance requirements of the Four Year Study Programme (4YSP). Most 
of the students on the 5YSP do not meet the entrant criterion set for mathematics: a mark of 
at least 60% (C-symbol) in mathematics at higher grade in the final examination in Grade 12 
[8]. The 5YSP is structured in such a way that the courses of the first two years of the 4YSP 
are spread over the first three years of the 5YSP. Students on the 5YSP attend the same 
classes, have the same lecturers and write the same tests and examination papers as students 
on the 4YSP.  

Students on both the 4YSP and the 5YSP do the compulsory mathematics modules in the first 
two years of study. Continuation to the final year of engineering study is not possible if a 
student has not passed these mathematics modules. In the School of Engineering our 
experience has revealed that a large number of students lack understanding in fundamental 
mathematical concepts. This mathematical inability seems to be increasing [9]. Similar 
observations are noted in the USA where a survey revealed that an increasing number of 
incoming students need remedial courses in mathematics [10]. 

Since the mid 1990s, experienced lecturers in the Department of Mathematics have also 
expressed a growing concern regarding the entry level mathematical preparedness of first 
year students. In 2000 a strategy of 'technique mastering' [11] was implemented to address 
the shortcomings in students' assumed pre-calculus knowledge. The technique mastering 
exercises were initially paper based and students had to achieve an 80% pass mark in each 
test. For each of the tests, students were granted three (paper based) attempts to achieve this 
mark. In 2001, the paper based re-attempts were replaced by computer-based tests. However, 
this intervention strategy did not work. A possible reason for this is that students did not 
perceive the effort as necessary as the marks for the technique mastering tests did not 
contribute to their final mark. Furthermore, the logistics of the additional testing and re-
testing became a burden for teaching staff who already had full course loads. The technique 
mastering strategy was eventually terminated in 2004. 

In response to the concern expressed by the School of Engineering [9] as well as by lecturers 
in the Department of Mathematics who present the second year modules to the engineering 
students, an inventory, the Mathematics Diagnostic Survey [12], was compiled. The aim in 
setting up the inventory was to: 

• determine the entry level knowledge ('must knows') in mathematics of first year students;  

• gain insight into students' information processing ability;  

• gain insight into students' problem solving behaviour; and 

• establish the students' confidence in their mathematical ability.  

'Must knows' are viewed as knowledge components that are vital for some activity and 
become so ingrained that it can be recalled effortlessly ([11], p.10). Information processing 
in mathematics refers to reading strategies, critical thinking and understanding strategies [13]. 
Problem solving behaviour in mathematics includes planning, self-monitoring, self-
evaluation and decision making during the process of problem solving in mathematics [13].  

2 Mathematics Diagnostic Survey (MDS) 

 The format of the 2005 survey is paper based and questions are answered on forms 
marked by an optic reader form. In Section A (Questions 1-6) students' details are required. 
Section B (Questions 7-27) deals with mathematical proficiency. The questions in Section B 
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are grouped in seven content domains, with each content domain focusing on a specific topic 
(see Table 1). Each content domain comprises two parts. Part one contains the questions and 
possible answers and in part two the student has to indicate how sure he/she is that the answer 
is correct. The format of the answers in part one is either multiple choice or match. The given 
answers apply to all the questions in a specific content domain. The number of answer 
options per content domain varies between six and ten (see Table 4). The aim with listing 
answers that apply to various questions, is to discourage guessing but rather encourage 
reasoning and computing to determine an answer. In setting up the survey, the choice of 
distractor answers was based on our experience of mistakes that students make. The format of 
the answers in part two of each content domain is a choice of one option out of four. Each of 
the four possible options indicates a level of confidence with which the given answer has 
been determined (selected). The confidence level options are: completely sure; reasonably 
sure; unsure; I am guessing. 

The total score for the MDS is 21 with one mark per correct answer. Of the 21 questions, 19 
are regarded as pre-calculus 'must knows' for calculus. Therefore a score ≥80% is regarded as 
indicative of a satisfactory entry level for calculus. In the instructions for completing the 
survey it is clearly stated that a student has to achieve at least 80% for part one (mathematics 
questions) but that the answers in part two (confidence level) is not to be taken into 
consideration for the final score.  

3 Research project 

 In 2005 the MDS was implemented to ascertain first year engineering students' 
mathematical preparedness for study in calculus. Students completed the MDS at the 
beginning of the academic year, within the first week of classes during a formal lecture 
period. In this paper an overview of the results obtained in the project is given. Only the 
results pertaining to the mathematics questions (part one of the content domains) are 
discussed. The mathematics results of the MDS are analysed and the Grade 12 (final school) 
mathematics marks are compared to the performance in the MDS. Results are given for the 
4YSP and 5YSP groups respectively. 

In the research reported in this paper, we consider only first entrant engineering students who 
enrolled at the University of Pretoria in 2005. First entrant engineering students exclude 
students who repeat their first year of study, as well as students who previously had done any 
tertiary course. The research involved 782 students including 664 students on the 4YSP and 
118 students on the 5YSP.  

4 Results and discussion 

The data in Table 2 summarises the detail of the research participants showing the 
mean M-scores, the mean of the Grade 12 mathematics mark and the mean of the MDS 
scores for the 4YSP and 5YSP students, respectively. Calculation of the M-score is based on 
final school results. Admission to the School of Engineering at the University of Pretoria 
requires a minimum M-score of 18 out of a possible 30 points as well as a minimum C-
symbol in both mathematics and physical science at Higher Grade (HG). Prospective students 
with at least a D symbol in Mathematics (HG) and/or Physical Science (HG), or an M score 
of between 12 and 18 are required to do an additional admissions test.  
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Table 1: Summary of the content domains of the Mathematics Diagnostic Survey (MDS) 

MDS Content 
domain Topic 

Some examples 
where topic is 
applicable in 
calculus in the 
first study year 

Number 
of 
possible 
answers 

 'Must 
knows' 

Information 
Processing 

Problem 
solving 
behaviour 

10 Q7    
 Q8    
 Q9    
 Q10    

Content domain 1 Solving 
equations 

Intercepts  
Domain  

 Q11    
10 Q12    
 Q13    

Content domain 2 Solving 
inequalities 

Increasing 
Decreasing  
Concavity  Q14    

10 Q15    
 Q16    

Content domain 3 Trigonometry 
identities 

Integration 
Solving equations 
Solving 
inequalities 

 Q17    

8 Q18    Content domain 4 Absolute 
value graphs 

Solving equations 
Solving 
inequalities 
Numerical 
integration 

 Q19    

6 Q20    Content domain 5 Radian 
measure 
Completing 
square 

Inverse trig 
functions 
Extreme values  
Conic sections 

 Q21    

10 Q22    
 Q23    

Content domain 6 Fractions Limits  
Differentiation 
Partial fractions 
Integration 
Asymptotes 

 Q24    

9 Q25    
 Q26    

Content domain 7 Translations 
of sine and 
cosine 
graphs 

Wave lengths 
Integration 
Parametric 
representations 

 Q27    

 
Table 2: Means of M-scores, of Grade 12 mark in mathematics and of MDS score 
Group N M-score Grade 12 math mark MDS 
4YSP 664 25 77.7% 59.6% 
5YSP 118 19 63.2% 52.0% 

 

Although the mean M-score of the 5YSP group in 2005 is above the required minimum of 18 
for admittance to engineering study, it is significantly lower than that of the 4YSP group. A 
low M-score is an indication of deficiencies in schooling and for engineering students with a 
low M-score, mathematics is a main area for concern. For both the 4YSP and the 5YSP group 
the means of the MDS are well below the expected minimum of 80%. When comparing the 
mean of the Grade 12 mathematics mark with the mean of the MDS mark, it is noticeable that 
for the 4YSP group the MDS mean is 18% lower than the Grade 12 mean and the MDS score 
is not in par with their high M-score. For the 5YSP group the MDS mean is 11% lower than 
the Grade 12 mean. Figure 1 illustrates the distribution of the percentage of students in the 
4YSP group according to achievement per score interval for the Grade 12 mathematics mark 
and the MDS mark. Figure 2 illustrates the same data for the 5YSP group.  
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In Figure 1 and in Figure 2 the labels on the horizontal axis indicate the score intervals 
(where A+>90%; A=80-89%; B=70-79%; C=60-69%; D=50-59%; E=40-49%; F=30-39%; G 
and H<30%). The values on the vertical axis indicate the percentage of students per score 
interval. The percentages per score interval are calculated as a percentage of the total number 
(N=782) of participants in this research project. 

 
Figure 1: Distribution of 4YSP students according to 

Grade 12 math% and MDS% 

 

Figure 2:  Distribution of 5YSP students according to 
Grade 12 math% and MDS% 

 
  4YSP Math %   4YSP MDS %  

 

 5YSP Math %   5YSP MDS % 

 
 

The diagrams in Figure 1 and Figure 2 show that for the 4YSP group the distribution of 
marks for the MDS differs noticeably from the distribution of marks for Grade 12 
mathematics and that for the 5YSP group there is less of a difference in the distribution of 
marks for the MDS compared to the distribution of their marks for Grade 12 mathematics.  

Further analysis of the results of the MDS reveals that only 10% of the 782 students who 
completed the MDS in 2005 achieved the expected minimum score of 80%. This 10% 
(N=78) of students comprises: 

88% students from the 4YSP group with Grade12 mark in A+ and A score intervals (≥80%); 

7% students from the 4YSP group with Grade12 mark in the B score interval (70-79%); 

3% students from the 5YSP group also with Grade12 mark in the B score interval; and 

2% students from the 5YSP group with Grade12 mark in the D score interval (50-59%).  

Of the 664 students in the 4YSP group, 51% achieved less than 60% in the MDS and another 
26% scored less than 50%. This is in contrast to their Grade 12 mathematics achievement of a 
C or higher (≥60%) and not in par with the average M-score for the 4YSP. It should be 
pointed out that a C or higher for Grade 12 mathematics and an average M-score of 25 is an 
indication of mathematical capability for engineering study. 

Analysis of results for the 5YSP group is more alarming as 74% of the group (N=118) 
achieved less than 50% in the MDS. 

For both the 4YSP and the 5YSP groups their performances in the MDS in 2005 is not 
encouraging. If a student's entry level knowledge of mathematics is poor it has consequences 
for calculus study. Schattschneider [14] confirms that an inadequate grounding in pre-
calculus can be a barrier in the study of calculus.  

The data in Table 3 gives the mean scores for the content domains of the MDS for the 4YSP 
group, the 5YSP group and the groups combined.  
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Table 3: Mean scores for the content domains of the MDS 
MDS Content 
domain Topic Mean score 

  4YSP 5YSP All 
  N=664 N=118 N=782 
Content domain 1 Solving equations 65.5% 11.3% 76.8% 
Content domain 2 Solving inequalities 56.6% 8.9% 65.5% 
Content domain 3 Trigonometry identities 39.6% 5.1% 44.7% 
Content domain 4 Absolute value graphs 27.8% 3.8% 31.6% 
Content domain 5 Radian measure.  Completing the 

square 
50.5% 7.9% 58.4% 

Content domain 6 Fractions 43.8% 6.1% 49.8% 
Content domain 7 Translations of sine and cosine 

graphs 
53.0% 8.3% 61.3% 

 

Although a detailed analysis of the results of the content domains is beyond the scope of this 
paper, the content domain with the highest mean score and that with the lowest mean score 
are briefly analysed. This analysis is done for the groups combined. A short analysis is also 
given of the question with the highest percentage correct answers and the question with the 
lowest percentage correct answer.  

The expected minimum score of 80% was not reached in any of the content domains. The 
highest mean score of 76.8% occurred in Content domain 1. Figure 3A shows the 
distribution of correct answers for the 4YSP and the 5YSP groups as well as the incorrect 
answers of the mean score in Content domain 1. The lowest mean score of 31.6% occurred in 
Content domain 4. Figure 3B shows the same distribution for Content domain 4. 

Figure 3: Distribution of correct answers in two content domains 

Figure 3A Figure 3B 

  
 

  
4YSP % 

correct 

 5YSP % 

correct 

 
% incorrect  

 

We did a further analysis of performance in specific questions of content domains one and 
four. 

In these content domains, all of the questions are regarded as 'must knows'; three of the 
questions require additional skills in information processing and for one of the questions, 
additional skills in problem solving behaviour is necessary (see Table 1). The questions and 
possible answers of Content domain 1 are listed in Table 4 and that of Content domain 4 in 
Table 5. 
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Students were exposed to the topic in Content domain 1 (solving equations) for at least five 
years of secondary schooling and it was expected that they should perform well. In each of 
questions seven, nine, ten and eleven a mean score of 80+% was achieved but the mean score 
for Question 8 is only 48%.  

 
Table 4: Questions and answers in Content domain 1 (Solving equations) 

  Possible answers to questions 7 to 11 
Question 7 If 

2( 1) 4x + =  then x =  (a) 1 (f) -1 or 1 

Question 8 If 
2( 1) 2x + =  then x =  (b) 2 (g) -3 or 1 

Question 9 If 1 4x + =  then x =  (c) 3 (h) -3 or 2 

Question 10 
If 

4
2

1x
=

+  then x =  
(d) ±2 (i) -5 or 3 

Question 11 If 
2 1 0x x− + − =  then x =  (e) ±3 (j) none of these 

 

In Content domain 4, Questions 18 and 19 are regarded as must knows and require skills in 
information processing and problem solving behaviour. Both questions also require skills in 
transforming graphs. A possible explanation for students' inability to determine the correct 
option is their lack of transfer of knowledge ([5], p.52). In this case the visual images of 
possible solutions are given (see Figure 4) and the correct answer can easily be found by 
checking the intercepts with the axes (a fundamental 'must know').  

 
Table 5: Questions in Content domain 4 (Absolute value graphs) 

Question 18 The graph of 2 1xy +=  is 
Question 19 The graph of 2 1xy = +  is 

 
Figure 4: Possible answers to questions 18 and 19 

   

    

   

g None of 

these 

 

The diagrams in Figure 5 show the distribution of the correct answers to the selected 
questions for the 4YSP and the 5YSP groups respectively. Question 10 in Content domain 1 
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has the highest number of correct answers and Question 18 in Content domain 4 has the 
lowest number of correct answers. The percentages in Figure 5 indicate the distribution of 
correct answers by the 4YSP and the 5YSP group respectively as well as the incorrect 
answers for the research group as a whole.  

 
Figure 5: Distribution of correct answers for selected questions 

Figure5A Figure5B 

  
 

  
4YSP % 

correct 

 5YSP % 

correct 

 
% incorrect  

 

The outcomes of the 2005 implementation of the MDS confirm that there is reason for 
concern regarding the entry level preparedness of first year engineering students at the 
University of Pretoria. The inevitable question now arises what should be done to address the 
problem. Continuing speculation about possible reasons for the students' low level of 
preparedness such as: inadequate schooling; poor qualified school teachers; coaching for the 
Grade 12 examination and inadequate content of the school syllabus will not solve the 
problem. We cannot start a calculus course at a knowledge level where we assume the 
students are, we need to meet the students where they are [15] and get them actively involved 
[16]. This will require rethinking our learning facilitation strategies, the process of learning 
and the learning content. In all our endeavours we should also keep in mind that: No style of 
teaching mathematics can substitute for insisting that students pick up their share of the 
work, unless one is willing to compromise standards ([17], p. 277). 

5 Conclusion 

Analysis of data concerning the mathematical ability of first entrant engineering 
students who enrolled at the University of Pretoria in 2005 indicates that 90% of the students 
did not demonstrate the level of preparedness expected from students who enrol for a first 
course in calculus. As competence in mathematics is a key aspect in engineering study, the 
2005 results of the Mathematics Diagnostic Survey are not encouraging and reason for 
concern. The challenge is that action, which will involve not only commitment from teaching 
staff, but also from students, should to be taken to address the shortcomings in the entry level 
preparedness of first year engineering students.  
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Abstract 

 
Most computer algebra systems (CAS) have built-in ordinary differential equation (ODE) 
solvers, but the accuracy of the solutions produced is not always obvious. Various ways of 
estimating the accuracy of ODE solvers are discussed here, extending work presented at the 
“Remarkable Delta 2003” conference in New Zealand. Our methods are easy enough for 
undergraduates to implement because the needed mathematics is accessible to them. Many 
students (and their teachers) have an in-depth knowledge of how to check the accuracy of 
numerical routines, but many trust them blindly. On the other hand, testing the accuracy of a 
routine takes more time than just running the routine to produce a solution and this is another 
reason for taking a solution at face value. Such blind trust could have negative connotations if 
carried through to industry and elsewhere after the student graduates. We cite an example of 
how experienced mathematical scientists (academics) have fallen into the trap of assuming 
numerical solutions to be correct. There already exist a number of routines to test the 
accuracy of ODE solvers, some of them time intensive, and some not. The routines 
introduced here add to this collection of routines and one of them substantially reduces the 
calculation time of an existing routine. 
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Abstract 

 

At the beginning of an introductory mathematical short course, especially for new university 
students, serious problems are observed with basic algebraic calculations. For instance, 
students do not know how to multiply and divide, solve easy problems, apply different 
properties, represent functions graphically or model geometrical situations that may help 
them in the comprehension of a particular situation.   

According to Baroody, informal learning is the fundamental basis to understanding and 
learning mathematics at school, when children undertake formal mathematics it replaces the 
informal mathematics.  The early graphic representations help students understand the 
process of learning from simple operations through to modelling more complicated functions.  
There are several phases associated with the process of learning these basic operations.  
According to Rico, the learning of functions represents a process with different phases well 
delimited. These phases in the process, must be based on simple basic calculations, geometric 
graphics, 3-D intuition, and recognition of the problem variables. It can be observed that most 
of the students do not have these abilities when finishing their secondary studies 

For this reason students fail the introductory examinations for the university. Therefore when 
attempting calculations, they just try to memorize algorithms without achieving a mental 
representation that may allow them get the basics of calculations  

Fucson (1986) considers that if we use concrete materials in the teaching of the math as a 
strategy of learning, this will help the students to organise their knowledge. If each concept 
has a concrete representation for students, it will be simpler for them to identify variables and 
therefore, model the proposed problem.   

If each operation, learned in previous courses, was acquired with the confidence from a 
representation, students may be able to develop strategies of problem solving, without 
mathematics being the major hurdle for them when entering university.   

If students have developed and matured their mathematical expertise at the three levels of 
acquisition of the abstraction, i.e., conceptual level, connection level and abstraction level 
(Rico et al.) and they successfully solve the problem, identifying variables, therefore they will 
be not afraid of failure, since their mathematical structure is built on solid foundations.   

If teachers of primary and secondary levels consider mathematics as a modelling activity, this 
would help to provide analytic tools to allow students understanding of the real world by 
interpreting physically and modelling its environment whilst knowing that there is not a 
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unique model for those representations.  Students will understand the physical qualities of 
magnitudes, opening gates for understanding of variables and functions modelling.   
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Abstract 

 

At the end of the seventies, Intelligence Harvard Project (I.P.H) was developed by researchers from 
both University of Harvard and several Venezuelan institutions: Hernstein, Nickerson, Perking, Jaeger 
Adams, Margarita, Amestoy, Catalina Laserna, etc…  Twenty years later, the outcomes of this project 
are being implemented in our courses, with a combination of students; secondary students, first year 
university students and students receiving individualised attention at private institutions.  The basic 
purpose was to improve the quality of the mathematics learning, developing abilities of intelligence, 
such as: 

• Enlarging the intellectual competence (intellectual abilities) in tasks as systematic 
observation, etc. 

• Learning different approaches to specific tasks (strategies or heuristics), using generalisation 
methods. 

• Utilise the expertise of conventional matters for the improvement of thinking. 

• Promote specific attitudes that favour the progress and implementation of the intellect 

Achievement of the development of several abilities:  ability to classify patterns; to reasoning 
inductively and deductively; to develop and use conceptual models; to understand and modify the 
adaptive behaviour. 

We worked with the six steps mentioned by the project, such as: 

Bases of the reasoning:  It tries to develop attitudes, awareness and basic processes that form the 
foundations to build upon: Observation and classification, Codification, Hierarchical classification, 
Analogies, 3-D Reasoning. 

Comprehension of the language:  It tries to teach how to deal with difficulties in the comprehension of 
texts such as:  relations among words, language Structure, Read for understanding. 

Verbal reasoning:  The deductive reasoning can be stated as propositional reasoning, based on the 
elaboration and analysis of proposals that are related, forming arguments that can be logical: 
Assertions, Arguments. 

Problem solving: Strategies of problem solving are on different basic types:  Linear representations, 
Table Representations, Representations by Simulation, a systematic approach by estimation, discuss 
and explain common misconceptions 

Taking decisions:  It tries to instruct students in the intricacies of the decision problems, where there 
is a choice of alternatives in order to arrive at the final goal, keeping in mind the following issues:  
Introduction to decisions taking, explore and evaluate information in order to reduce uncertainty, 
Analysis of situations where there is difficulty making decisions.  
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 Innovative thinking:  This item impacts in the routine habits, trying to teach how to see objects and 
ordinary procedures as designs; product of creativity, for instance:  design, procedures of design. 

The application of the project has been very positive for the teaching of mathematics mainly at the 
pre-university level and in short courses at the initial stages of university studies.   

A drawback was the number of students in the courses that often created difficulties with the 
individualised attention required by this system. 
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We assess the impact of a three credit-hour graduate level mathematics course which focuses on issues 
related the teaching of mathematics at the college level. We do this by analyses of student course evaluation 
data from classes taught by our mathematics graduate student teaching assistants and from interviews with 
teaching assistants who had taken the course. Our primary conclusion is that our course had a significant 
positive effect on the teaching assistants’ confidence and comfort levels, with related impact on their 
teaching practise. 

 

Keywords: Mathematics, Teaching Assistant, Professional Development 

1. Introduction 

A significant percentage of all lower division courses, at doctoral-degree-granting 
universities in the United States are taught by graduate student teaching assistants (GTAs). 
(Marincovich, Prostko, & Stout, 1998) Moreover there are indications that such reliance on 
GTAs will only increase in the near future. (Mcgivney-Burelle, et al, 2001) The need for 
graduate-degree-granting departments to provide teacher training to GTAs is clear, especially 
for departments in such common core areas as mathematics.   

1.1. Local Context.  Our context is that of a large (~30 000 students) state-supported 
university.  The department of mathematics and statistics consists of 45 tenured or tenure-
track faculty, eight to10 lecturers, and 80 or so mathematics graduate student teaching 
assistants (MTAs). The department offers bachelor through Ph. D. degrees, but the bulk of 
the department’s teaching load is service courses at the undergraduate level (maths for 
business students, for engineers, etc.).  

During the fall semester of 2000 just over 8000 students were enrolled in our undergraduate 
mathematics classes, while in fall 2005 our enrollment was over 9000.  Always crucial, the 
role of MTAs in meeting the department’s undergraduate teaching responsibilities has 
become all the more critical since the number of full-time faculty positions has remained 
static during this period of enrollment increases.   

Prior to fall 2000 the only preparation for MTAs with sufficient English communication 
skills, as defined by the university, consisted of a two-hour orientation session just before the 
start of each term.  A typical assignment for MTAs with at least 18 graduate mathematics 
credit-hours is to teach, as instructor of record, two sections of one of the multi-section 
courses such as college algebra, taught in 25-30 sections of 40-50 students each.  A full-time 
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faculty member is assigned to teach one section and is designated as the course coordinator. 
This person meets for one to two hours, once every two weeks with the MTAs, for the 
purpose of coordinating the conduct of the course and dealing with any issues that might 
arise.  MTAs with fewer than 18 hours of graduate mathemathics credit can not be assigned 
as instructor of record for a class, so there is pressure for all new MTAs to obtain 18 credit-
hours as quickly as possible. 

1.2. Project Impetus.  In fall 1999 our chair came to the conclusion that our MTA 
professional development programme was inadequate.  Moreover, as indicated above, it is in 
the department’s best interest for new MTAs to obtain as many credit hours as possible 
during their first semester. So he asked the Director of Undergraduate Programs (DUP), 
second author of this paper, to develop a three-hour, graduate-level course devoted to the 
professional development of our MTAs.  The DUP was given explicit instructions that the 
course not place such a burden on the MTAs as to hinder progress in their ‘real math classes’.  
The resulting course, referred to as The Course, is the topic of this paper. Our basic question 
is the following. What effect does The Course have on the MTAs who take it?  

2. The Course 

Using extensive records maintained by each instructor of The Course, we compiled a 
detailed description of its evolution from its inception in fall 2000, through fall 2004. 
(Froman, 2005).  The Course has always consisted of three primary components.   

2.1. MTA Presentations.  Each MTA gives a 20 minute, video-taped presentation on a topic 
he/she expects to be teaching in a college maths class. After the presentation the MTA is 
evaluated by the other MTAs using the Mini Lecture Critique form. (Appendix A) The 
critiques and the recording are given to the presenter.  The purpose is to introduce the MTAs 
to self-reflection and constructive criticism as mechanisms for improving their classroom 
practise.  

2.2. Case Studies.  Working in groups, the MTAs analyse case studies developed by the 
Boston College mathematics case studies project. (Friedberg, 2001)   These case studies 
involve a wide range of situations and issues that commonly occur in the teaching of 
mathematics at the college level.  The intent is to help the MTAs gain experience for use in 
their own classrooms and professional interactions. 

2.3. Reading Assignments.   The MTAs read selected materials which are then covered in 
group and/or whole class discussions. The readings focus primarily on ethical, philosophical, 
and theoretical issues related to teaching mathematics at the college level. (Appendix B)  The 
objective is to give the MTAs a broader understanding of the profession and help them begin 
the life-long process of developing their own teaching philosophies.   

The role of the instructor of The Course is to choose the assignments and case studies and 
facilitate the in-class discussions.  The expectation is that the MTAs, working together with 
their peers, develop their own teaching practises and philosophy.  While the instructor 
provides examples and participates in the discussions, it is not his/her role to teach either 
methodology or philosophy.  Grades are not an issue since the MTAs are guaranteed an ‘A’ if 
they attend and participate.  

All new MTAs entering our program in the fall with fewer than 18 hours of graduate 
mathematics credit are required to take The Course.  MTAs who enter in the spring and have 
earned 18 hours prior to the subsequent fall, or who enter our program with 18 hours, are not 
required to take The Course.  On average, 17 MTAs are enrolled in The Course each fall and 
none have any prior college level teaching experience.  
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3. Assessment 

In spring 2005 we decided to see what effect, if any, The Course was having on the 
MTAs taking it. The primary sources of data available to us were the university’s teaching 
evaluation and grade data from all courses taught by MTAs, and the MTAs themselves.  
Since there is no uniform system for assigning course grades, we decided the grade data was 
not useful. 

3.1. Student Evaluations.  The end-of-term student course evaluations, Student Evaluation 
of Course and Instructor (SECI), used by the university has 16 statements, the first 10 with 
the subheading ‘Instructor’s Performance’ and the last six with subheading ‘Course 
Evaluation’.  The students are asked to respond to each statement by choosing one of the 
following: strongly agree (5), agree (4), neutral (3), disagree (2), or strongly disagree (1).  We 
considered only those responses to the 10 statements in the ‘Instructor’s Performance’ 
category: 

1. Overall the instructor was effective. 
2. The instructor was available for consultation during office hours or by appointment. 
3. The instructor stimulated student leaning. 
4. The instructor treated all students fairly. 
5. The instructor treated all students with respect. 
6. The instructor welcomed and encouraged questions and comments. 
7. The instructor presented the information clearly. 
8. The instructor emphasized the major points and concepts 
9. The instructor went beyond presenting the information in the text. 
10. The instructor demonstrated knowledge of the subject. 

We analysed the SECI results from all fall 2004 classes taught by the 48 MTAs on staff in 
spring 2005.  This included responses from 1377 students taught by 28 MTAs who had taken 
The Course (MTA-C) and 906 students taught by 20 MTAs who had not taken it (MTA-nC).  
For each statement we compared the scores for MTA-C to the scores for MTA-nC. Here we 
choose to present the data for statements 5 and 6, tables 1 and 2, because statement 5 is an 
example of a statement that yielded no significant difference and statement 6 is the one that 
yielded the most significant difference between the MTA-C and the MTA-nC. Similar tables 
for all ten statements are available on line. (Froman, 2005, pp 21 - 30)  The results of our 
final analyses on all ten statements are tabulated in tables 5 and 6 below.  

In all tables a p-value marked with “***” is interpreted as highly significant (p-value < 
0.01), with “**” as significant (0.01 ≤ p-value < 0.05), and with “*” as marginally significant 
(0.05 ≤ p-value < 0.10).  To maintain a 95% overall confidence level, we applied a 
Bonferroni adjustment using 10/05.=α  with |z| > 2.807 for each comparison. (Keppel, 
1999) There was significant difference in favor of MTA-C for all statements except numbers 
4, 5, and 10. 

 
Table 1: Statement 5 analyses: Treated students with respect. 

Course Avg. n St. Dev. z-value p-value  

MTA-C 4.510654 1361 0.696681   

MTA-nC 4.487859 906 0.707002   

Sig. 0.7563 1.0000  
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Table 2: Statement 6 analyses: Encouraged questions. 

Course Avg. n St. Dev. z-value p-value  

MTA-C 4.532151 1353 0.703358    

MTA-nC 4.326923 884 0.840993    

Sig.    6.0109 0.0000 *** 

However, of the 28 MTA-C, five were international, while 14 of the 20 MTA-nC  were 
international. This led to the question of whether the scores were the result of an 
international, IMTA, versus national, NMTA, issue. So we compared all groups with the 
same significance test. Results for statements 5 and 6 are given in the tables 3 and 4.  

Table 3: Statement 5 analyses by IMTA or NMTA 

 Avg. Total St. Dev z-value p-value  

IMTA-C 4.533040 227 0.705548   

IMTA-nC 4.511111 585 0.670026   

NMTA-nC 4.475083 301 0.763900   

NMTA-C 4.497832 1153 0.704798   

IMTA-C IMTA-nC 0.4030 1.0000  

IMTA-C NMTA-nC 0.9017 1.0000  

IMTA-C NMTA-C 0.5477 1.0000  

IMTA-nC NMTA-nC 0.6926 1.0000  

IMTA-nC NMTA-C    0.3836 1.0000  

NMTA-nC NMTA-C    -0.4673 1.0000  

 

Table 4: Statement 6 analyses by IMTA or NMTA 
 Avg. Total St. Dev. z-value p-value  

IMTA-C 4.576763 241 0.721197   

IMTA-nC 4.304274 585 0.769539   

NMTA-nC 4.371237 299 0.965500   

NMTA-C 4.511091 1127 0.716224   

IMTA-C IMTA-nC 4.8394 0.0008 *** 

IMTA-C NMTA-nC 2.8296 0.2796  

IMTA-C NMTA-C 0.9041 1.0000  

IMTA-nC NMTA-nC -1.0420 1.0000  

IMTA-nC NMTA-C -5.3989 0.0000 *** 

NMTA-nC NMTA-C -2.3397 1.0000  

Here we have made 60 comparisons, so to maintain an overall confidence level of 95% we 
apply the Bonferroni adjustment 60/05.=α  with |z| > 3.34.  Again there appeared to be 
significance in all statements except 4, 5, and 10. (Froman, 2005) 

This model, however, cannot account for all the dependence occurring due to possible 
variation between individual MTAs within each group. Thus we implemented a two-way 
factorial analysis of variance (ANOVA). (Anderson/Mclean, 1974) Tables 5 and 6 show the 
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results of the two-way ANOVA model on the course effect and the MTA type effect for each 
of the 10 statements.  

Table 5: 2-Way ANOVA analyses: course effect 

Statement F (df1, df2) p-value  

1:  Overall Instructor Effective 2.58 (1, 46) 0.1153  

2:  Instructor Available 5.09 (1, 49) 0.0287 ** 

3:  Stimulated Learning 3.70 (1,46) 0.0608 * 

4:  Treated Students Fairly 1.86 (1, 47) 0.1781  

5:  Treated Students With Respect 1.78 (1, 47) 0.1881  

6:  Encouraged Questions 10.29 (1, 46) 0.0024 *** 

7:  Presented Material Clearly 3.55 (1, 46) 0.0658 * 

8:  Emphasized Major Points 3.22 (1, 47) 0.0790 * 

9:  Went Beyond Information in Text 5.34 (1, 46) 0.0254 ** 

10:  Demonstrated Knowledge 1.78 (1, 47) 0.1893  

 
Table 6: 2-Way ANOVA analyses: MTA type effect 

Statement F (df1, df2) p-value  

1:  Overall Instructor Effective 0.11 (1, 46) 0.7418  

2:  Instructor Available 0.40 (1, 49) 0.5322  

3:  Stimulated Learning 0.11 (1, 46) 0.7437  

4:  Treated Students Fairly 0.74 (1, 47) 0.3930  

5:  Treated Students With Respect 1.97 (1, 47) 0.1674  

6:  Encouraged Questions 1.33 (1, 46) 0.2546  

7:  Presented Material Clearly 1.05 (1, 46) 0.3107  

8:  Emphasized Major Points 0.24 (1, 47) 0.6269  

9:  Went Beyond Information in Text 0.04 (1, 46) 0.8348  

10:  Demonstrated Knowledge 0.18 (1, 47) 0.6765  

 

3.2. Interview Data.    We interviewed 22 MTAs (13 males, nine female) on staff in spring 
2005 who had taken The Course. We used a uniform interview instrument (Appendix C) in 
which all MTAs were given the same instructions and asked the same questions, in the same 
order.  The DUP was not present when the first author conducted the interviews, which were 
audio-recorded.  We anticipated the MTAs would assume the DUP would listen to the 
interviews. To mitigate this possibly intimidating factor we chose interview questions that 
focused attention on the content of The Course and solicited criticism. During each interview 
the first author noted his observations on the interview instrument. After each interview, he 
reviewed the recording to insure that his noted observations were consistent with the 
interviewee’s actual statements.  Then the DUP listened to each interview and used the 
interview instrument to record his observations. Independently we made a subjective 
assessment of each MTA’s overall reaction using the following descriptors: highly positive, 
positive, neutral, negative, highly negative.  After our independent observations and 
assessments we met to compare conclusions.  When there appeared to be inconsistencies we 
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listened to the appropriate portions of the recorded interviews together and arrived at a 
consensus. Extensive accounts of the interviews are available on line. (Froman, 2005)   

Fall 2000 (Taught by DUP).  Three MTAs (all male) were interviewed from the fall 2000 
course.  One was rated as very negative and the other two as positive.  The very negative 
MTA claimed to have gotten ‘nothing out of the course’, although later in the interview 
admitted to realizing that he learned that he ‘needed to relax a little more’.  He thought the 
video-recorded lecture was least beneficial, while the grading exercise from the case studies 
(Friedberg, 2001) was the most beneficial thing from the course.  Of the other two MTAs, 
one felt he gained more confidence while the other gained more humility and ‘became more 
patient’.  Both rated the video-recorded lecture as the most beneficial and one rated the 
grading exercise as the least beneficial: ‘Everyone had their own way of grading, it didn’t 
change them’. All three thought the course needed to have greater emphasis on practical 
issues: ‘things we do every day’. 

Fall 2001 (Taught by our Chair). Three MTAs (all male) were interviewed from the fall 
2001 course. One was rated as negative, the other two as neutral.  Two claimed no effect on 
either attitudes or teaching practise. One observed ‘I’m old and set in my ways anyway’. The 
other confirmed a much held belief: ‘How to teach a math course was based on my 
experience as an undergrad’.  However the third pointed to the grading exercise as affecting 
his practise, making him ‘more lenient in my grading’ and ‘more patient with students’. One 
MTA thought that watching others teach was the most beneficial and the readings least 
beneficial. Two MTAs felt The Course was a good introduction to graduate school and the 
mathematics department.  When asked what was lacking in the course two MTAs had very 
similar responses:  

What they’re doing now, having lessons on how students learn, dealing with students, 
video lessons, how to deal with complaints and false accusations, how to deal with 
parents and administration. 

One MTA added ‘Since it is required it should count toward your degree’. 

Fall 2002 (Taught by DUP). Three MTAs (all female) were interviewed from the fall 
2002 course.  One was rated as neutral and the other two as positive. Two noted a change 
in their attitudes towards teaching, while the third did not.  However the one claiming no 
change in attitude, claimed to have made significant changes in her practise, observing 
the need to ‘try to incorporate different styles’ and ‘make students do examples in class.  
If they just watch me do it then they’re not going to learn’. Video-taped presentations and 
the grading exercise case study were listed as most beneficial.  An interesting response to 
the least beneficial aspect of the class was ‘no closure to the discussions, all gray, not 
necessarily a right answer, maybe that’s the point, there are gray areas’.   When asked 
why she took the course one MTA responded: ‘Required, well not required, but they say 
everyone takes it’.  Two thought The Course was worthwhile, with one commenting ‘Yes, 
recommend everyone to take it, even professors’. After hesitation, the third thought the 
course needed to include ‘more mechanical aspects of teaching’. 

Fall 2003 (Taught by another colleague).  Six MTAs (three male and three female) 
were interviewed from the fall 2003 course.  Three (two males and one female) were 
rated as highly positive, two (one male and one female) as positive, and the other female 
as neutral. One male MTA claimed no attitude change: ‘I went in wanting to be a teacher, 
that goal was not changed’. The other MTAs said the course had contributed to changes 
in their attitudes, with one male observing ‘It made me a little more calm.  I was worried 
about teaching students of the same age or older’.  The same MTA thought a main benefit 
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of The Course was ‘talking to fellow students (MTAs), knowing we’re in the same boat’.  
One female MTA viewed the course as ‘a therapy session’.  Four MTAs felt The Course 
had affected their teaching practise with respect to improved classroom technique.  Four 
MTAs viewed the case studies as being most beneficial and the other two thought the 
video-recordings and peer critiques were most beneficial.   Two female MTAs mentioned 
the articles as being the least beneficial, with one admitting to not reading a lot of them.  
One female MTA summarized the goal of The Course as follows: 

Prepare you to teach, to make you more comfortable and let you know that you’re not 
alone…course is a good example of how the department really cares about its’ TAs.  I 
heard horror stories about how they hand you a book and say go teach. 

All six MTAs believed the goals had been achieved with ‘gaining confidence’ and 
‘feeling more comfortable teaching college’ being the two most often mentioned 
outcomes.  The hours not counting towards degree plans was a concern.  

Fall 2004 (Taught by DUP).  Seven MTAs (four male and three female) were 
interviewed from the fall 2004 course. One male was rated as highly positive, two 
females and one male as positive, two males as neutral, and one female as negative.  The 
negative MTA claimed no change in her attitude, while all the other MTAs reported a 
change in attitude, with increase in comfort level being mentioned by several.  One 
female MTA summarized her attitude change as follows: 

I feel more privileged to teach students the same age.....at first I hated it, still 
intimidated.  I realize now it’s not just giving out info, but communicating with 
people. 

Regarding teaching practise, one male and one female MTA referred to the video-taped 
lecture as pointing out things they will try to improve upon. Another female MTA 
observed ‘I learned that I have the authority to gain control of class…became more 
comfortable using teaching skills’.  Five MTAs mentioned the case studies as being the 
most beneficial, with the case studies involving grading, cheating, harassment, and 
meeting students outside of class all mentioned.  One female and two male MTAs said 
everything was beneficial, while one female thought the articles were ‘not helpful in 
general’, and one male MTA observed ‘A lot of days, just argued over opinions. Some 
would dominate and basically shut down discussions’.  A summary of the course goals as 
perceived by these MTAs follows: 

To prepare us to represent the department and university as educators and to set 
standards.  

To expose us to different styles of teaching, how to handle students, other TAs and 
faculty.  

Teach you how to teach.  

To get an overview of what to expect as a TA and to gain confidence in teaching. To 
get us ready to teach at the college level.  

To produce better teachers, not just teach, but implicate moral values and present 
material beyond the requirements. 

All MTAs thought The Course achieved its goals. When asked why they took The 
Course, four simply responded that it was required; one adding ‘but I’m glad I took it, 
learned some stuff I didn’t know I needed’. Six could not think of anything lacking in The 
Course, while one female MTA said ‘Maybe some more role playing in groups’.  Two 
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male MTAs thought the course was not worthwhile because it didn’t count towards their 
degree and one female responded ‘No, I don’t feel I learned that much as far as how to 
teach.  I think you learn to teach by teaching’.   

4. Discussion 

From the analyses of the SECI data we conclude that their students’ perceptions, with 
respect to the specified attributes, were not measurably affected by the MTA type, 
international or national.  The MTAs who took The Course were viewed by their students as 
much more likely to welcome and encourage questions and comments, and as more likely to 
be available for out-of-class consultation and to present information beyond the text, than 
were the MTAs who had not taken The Course.   

Analyses of the interview data suggests the common attitude changes involved gaining 
confidence and becoming more comfortable with their role as teachers. The case studies 
appear to be the primary impetus for change of attitudes and the video tapes for the changes 
in teaching practise. It appears The Course has become an accepted part of our MTA culture; 
however, there is lingering concern about hours not counting and the need for more practical 
information.   

5. Conclusion 

We believe the SECI and interview data are consistent in that an instructor’s comfort and 
confidence levels should be directly related to his/her willingness to encourage questions and 
comments during class, being available and encouraging out-of-class consultation, and 
presenting material beyond the text.  Thus, in answer to our original question, we believe The 
Course has increased the confidence and comfort levels of the MTAs taking it (121 as of fall 
2006), with related impact on their teaching practise. 

 

Appendix A 

Mini Lecture Critique (Comment space on original form has been omitted here.) 

Name of Lecturer:  _______________________ 

(From the Texas Tech University Student Evaluation of Course and Instructor) 

Please respond to the questions below by marking the appropriate oval.  The ovals form a 
rating scale of 5 (strongly agree) to 1 (strongly disagree). 

 

The instructor stimulated student learning.  5 4 3 2 1  

 

. . . welcomed questions and comment       5 4 3 2 1   

 

. . . presented the information clearly    5 4 3 2 1 

 

. . . emphasized the major points and concepts  5 4 3 2 1 

 

. . . demonstrated knowledge of the subject  5 4 3 2 1 

(Specific for these mini lectures) 
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Comment on strengths of the presentation. 

Comment on weaknesses of the presentation. 
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Appendix C 

Interviews of students who have taken the pedagogy course. (Space for observer notes on 
original form has been omitted here.) 

Name of TA:________________  Date and time of interview: _______________ 

Term in which TA took the course:_____________ 

(To be read at beginning of each interview) We are trying to determine how the Pedagogy 
course (MATH 5360) has effected our TA’s beliefs and practise with regard to the teaching 
of math to college students.  The purpose of this interview is to seek your opinion about some 
issues related to this endeavor.  The results of our study will appear in a Masters Thesis and 
possibly in a journal article.  No individual will be identified in either the Thesis or the 
possible journal article.  By agreeing to this interview you are granting us permission to use 
data obtained from it in the thesis and possible article.  In order to accurately interpret your 
responses we wish to audio tape this interview.  Do you agree to allow this interview to be 
audio taped?   

(If “yes” start audio taping, if “no” make note that audio recorder remained off.) 
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In what ways, if at all, did taking the pedagogy course affect your attitudes about teaching 
math to college students? 

In what ways, if at all, has the pedagogy course affected your teaching practice? 

What topics or content in the course do you believe to have been the most beneficial? 

What topics or content in the course do you believe to have been the least beneficial? 

What do you think was the goal of the course and do you think it achieved that goal? 

Did you watch your video tape lesson? 

If “yes” what was your assessment?  If “no” why not? 

Why did you take the course? 

Is there anything you think should be in the course that was not there? 

Do you believe you got your money’s worth out of the course? 
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Understanding students’ misconceptions of statistics at 
Botswana College of Agriculture 

GOTHATAMANG PATRICK NTHOIWA* 

Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana 

 

Abstract 

Botswana College of agriculture (BCA) admits about 200 students per year to pursue 
programs at undergraduate level in various agricultural disciplines such as General 
Agriculture, Agricultural Education, Horticulture, Forestry, Animal Health and Production 
and Agricultural Engineering. These students complete normal courses for their respective 
disciplines, but they are also required to complete and pass courses in Statistics as a 
requirement for graduation. Students’ grades for the past ten years have so far indicated that 
Statistics courses are not well appreciated at BCA with the majority of students obtaining 
below average marks and a low overall pass rates. Statistics is also one of those courses 
which delay students to graduate since they have to do it repeatedly until they succeed. This 
paper looks at the way in which Statistics courses are viewed by students pursuing 
agricultural programs at BCA. A survey of students doing a course in Introduction to 
Statistics is used to look at their attitudes, expectations and their general perceptions of 
Statistics in relation to other courses taken and their career expectations. The outcome of this 
research will be used as a yardstick to provide strategies that will help both students and 
instructors address attitudes that hinder students’ effective learning.  

 

Keywords: attitudes, statistics, agricultural students  
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The mathematical education in the current scenario 
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Universidad Tecnológica Nacional Facultad Regional Buenos Aires,Argentina  

 

Abstract 

 

The development of computer technology has affected university education along with other 
changes in the past few years.  The difficulty of accommodating and retaining new students 
(tutorship system has helped this in both public and private universities) combined with lack 
of mathematical skills greatly hinder the teaching and learning of mathematics at this level.  

Some notable differences between the average level of mathematics education and above, 
with reference to the purposes, objectives, methods and approaches to teaching lead to many 
problems.  The mathematics teachers of the Universidad Tecnológica Nacional Facultad 
Regional Buenos Aires, in particular those teaching discrete mathematics, face a double 
challenge with students whose average level of preparation, knowledge and attitudes still are 
questionable as university students and other topics must have the level and quality of study 
in each subject deserves.  

The dropout rate is a constant disappointment that impacts not only on the educational 
mission of the department but on the university institution. To attempt to rectify this situation, 
it is necessary to provide innovative teaching where the educators assist the growth of 
cognitive strategies to motivate students to become main players rather than spectators in 
their mathematical development. 

The curricular activities of the course will encourage the potential of each student with the 
use of new technologies (computers) and traditional methods (tutor system) taking into 
account the individuality of each student. This research will show that respect of the 
individuality of each student and the uses of alternative methodologies, such as computer 
technologies, small integrated pieces of work, will assist in the development of how to 
surmise, build and design.   

 

Keywords: university, permanency, tutor, teaching, mathematics, learning 
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Workshop abstract 

 

I have been asked to head a group of five people who are to prepare a survey on the 
"Recruitment, entrance and retention of students to university mathematics studies in 
different countries" for ICME 11 in Mexico next year. This topic I suspect was predicated on 
the assumption that numbers in mathematics are declining worldwide. The group has already 
sent a questionnaire to the Delta mailing list and a summary of the results of that are now 
available on the web.  

In my session I plan to summarise these results and to look at the form of the final ICME 
presentation. But more importantly I would like to use much of my time to discuss the issues 
raised by the survey. These are   

(i) are the numbers of students in mathematics declining?; 

(ii) if so, why?; and  

(iii) what is being done to combat any decline and how successful have these attempts 
been? 

 I will be very keen to hear your comments. 

 

                                                 
* Email: dholton@maths.otago.ac.nz 
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Transfer of learning in linear algebra 

GULDEN KARAKOK and BARBARA EDWARDS 

 

Abstract 

 

One of the main problems in college education is stated to be students lacking ability to 
transfer of learning. Researchers designed a study to investigate if the same problem apparent 
at higher level undergraduate courses such as linear algebra. The concepts from linear algebra 
courses are used in many different courses in mathematics, science and engineering 
departments.   Researchers first wanted to investigate how students’ understand some typical 
linear algebra concepts such as vectors, matrices, linear transformations, eigenvalues and 
eigenvectors, etc. Then, students’ ways of making connections within these linear algebra 
concepts was explored further. Students’ conceptual connections between and among 
different concepts in linear algebra may or may not be determined by the type of linear 
algebra course they take. Thus we invited students from different majors who have taken 
some sort of linear algebra courses. Our preliminary finding shows that certain activities help 
students make stronger connections among concepts.  We wish to share these preliminary 
results. We hope theses findings will help educators improve the linear algebra curriculum.  
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Teaching university mathematics and coaching youth 
soccer 

MATTHIAS KAWSKI* 
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This note reflects on similarities between best practice in teaching mathematics and in coaching children's 
soccer. The focus is on two examples: The key role, importance, and design of problem solving activities, and 
the necessary restraint on what kind of feedback and corrections to provide in a student centered classroom or 
practice. A central observation is that, in the end, learning and teaching in no matter what subject, involves the 
same human organ. Hence one may find helpful ideas and solutions for teaching one's subject even in domains 
that appear very distant. Indeed, as laid out in the author's personal experiences, sometimes it may even be 
easier to become aware of, understand, and improve on learning issues when experiencing them in a very 
different discipline. 

Keywords: Problem solving, student-centered, best practices.  

1 Introduction 

This article presents a different twist of the popular saying [1] “from sage on the stage to 
guide (or coach) on the side''. It reflects on similarities between best practices in teaching 
mathematics in a student centred environment, and in coaching youth sports, with focus on 
children's soccer. It is strongly motivated by the very similar misconceptions about either 
side: The colleagues and even the instructors in the coaching licensing courses, much like the 
general public, thought of mathematics teaching as being mostly about supervising the 
memorization of recipes and drill of algorithmic procedures. On the other hand, fellow 
mathematics instructors and e.g. colleagues at international conferences related to 
mathematics education thought of coaching youth soccer as being all about repetitive drill 
exercises designed to shape muscle memory, and at older ages, about perfecting the execution 
of a library of predesigned combination plays. Moreover, many more experienced, and more 
reflective members of either side claimed that, unlike the other side, effective 
teaching/coaching in their own area is mainly about designing problem solving activities.  

As a research mathematician, with a secondary interest in undergraduate mathematics 
education research, the author found that this is more than just an amusing coincidence. As a 
student in coaching license courses, and as a coach routinely designing activities for each 
practice, he observed that this is a two-way street. The two groups are very dissimilar: On one 
side there are university students and primarily mental exercises in mathematics. On the other 
side, there are consider children of ages 8 through 12, and primarily physical activities in 
soccer. But it is precisely this contrast that makes it even more compelling to reflect on the 
common principles of effective learning strategies. Almost certainly there are deep reasons 
why in either setting the professional organizations seem to converge on very similar 
recommendations. While it is fun to speculate about such deeper reasons in terms of the 
make-up of our brains and general learning theories, this is beyond the scope of this brief 
note. Instead, we shall be very descriptive and practically oriented.  
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This article does not present hard statistical data, but the author has considerable anecdotal 
evidence that either practice, together with abstraction and reflection, has considerably 
improved the effectiveness of both his mathematics teaching and his soccer coaching. This 
includes superior success (retention, being selected by top graduate schools, or by elite teams 
at the teen level) as well as numerical student teacher evaluations, and verbal feedback by 
players, parents, and other coaches. From the point of view of mathematics education 
researchers, or physical education researchers, these observations may not come as a surprise. 
Yet the teacher working in the ditches is often torn between heeding traditions and 
implementing lofty recommendations that come from education researchers and which often 
are considered controversial among students, parents and colleagues.  

Observing the positive results of implementing the recommended principles in such different 
arenas  has made the author feel considerably more at ease with following the 
recommendations, even in the presence of considerable local antagonism. He hopes that by 
sharing this experience, others, too will find strength to continue the path of implementing the 
recommendations based on research.  

Since this note is primarily addressed at mathematics educators, and mathematics education 
researchers, the next section first gives an overview of guidelines for coaching youth soccer 
by the top professional organizations. This is followed by comparisons to teaching strategies 
in mathematics, and selected more detailed examples of teaching situations. The final section 
summarizes our observations, and makes a few suggestions for deeper reflection, and for 
looking beyond the traditional narrow disciplines for proven methods for effective teaching 
and coaching.  

2  Coaching youth soccer in the United States 

2.1 Youth soccer in the United States 

Soccer is widely considered the world's most popular sport, as measured by the number of 
active participants and spectators. However, it has arrived in the United States only 
comparatively recently. At the professional level it cannot compete in the U.S. with the 
highly developed traditional sports with their intricate commercial networks. However, at the 
youth level, already in the late 1990s soccer became the number one sport (measured by 
number of active players) in the United States, too.  

While in most parts of the world, soccer is played everywhere in the streets, parks, plazas, on 
the beaches with often only minimal equipment and formal organization, and still 
predominantly by male players, the situation in the United States is quite different.  

Unlike, say, the continental European countries, in which schools and universities concentrate 
on academics, the United States schools and colleges have a long tradition of fielding highly 
competitive athletic teams. These not only usually are major commercial enterprises by 
themselves, but they also come with a long tradition of athletic scholarships. Given ever more 
sky-rocketing costs for private schools and colleges, such athletic scholarships, which may be 
worth thousands, even tens of thousands of dollars, are by many seen as a unique enabler for 
accessing a postsecondary degree. Historically, the male dominated team-sports with their 
huge rosters (up to a hundred players) such as American Football have been the biggest 
providers of such scholarships. However, in 1972, the famous Title IX of the Education 
Amendments of 1972 [2] completely changed the playing field. Among many other changes, 
it requires that colleges and universities give females equal access to athletic scholarships. 
This has resulted in the termination of numerous male sports, and the creation of many 
female teams. The natural counterpart to the male American Football teams are female soccer 
teams at colleges across the continent.  
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In view of this background, it may not come as a big surprise that parents are willing to invest 
large amounts for competitive soccer programs for their children. Typical costs for even 
twelve to fifteen year olds in competitive teams are anywhere from USD 1500 per year, and 
up, plus additional costs for interstate tournament travel.  

2.2 Coaching education and best practices 

Given the ensuing high demand for competitive coaching, it is natural that the 
professional organizations, foremost the United States Soccer Federation (USSF), have 
instituted carefully monitored professional training and licensing programs for coaches. The 
desire to compete and win at the highest levels, together with a large community of 
researchers in university physical education and related departments, provide ample resources 
for science based guidelines. A detailed discussion of the literature in this area is beyond the 
scope of this note. We refer to the “Player development guidelines'' as in the USSF's “Best 
Practices For Coaching Soccer In The United States” [3], which have been written in 
consultation with a broad spectrum of academic researchers in kinesiology, psychology 
physical education, sports sociology etc. Notable primary references are [4,5], which 
advocate e.g. “athlete centred coaching'' with the objective of Developing Decision Makers. 
Through the affiliated state organizations, the USSF offers a multi-tiered system of coaching 
education and certification courses. These start with weekend long seminars, and extend to 
multi-week, all day courses. They combine both theoretical and practical (on the field) 
instruction and examinations.  

As a candidate in such courses, the author was particularly intrigued by the careful balance 
between technical content and pedagogy, which reminded him most strongly of the heated 
controversies about the corresponding proper balance between content knowledge and 
pedagogy in mathematics teacher education.  

The lower level USSF coaching courses very much focus on pedagogical issues, what is age-
appropriate, and what characterizes effective practices (a.k.a. lesson plans). The analogue of 
content knowledge plays a much smaller role: Most coaching candidates have substantial 
technical knowledge from an earlier career as a professional player, and continuing technical 
education relies strongly on constant collaboration with ones' peers. Possible mathematical 
analogues would be future teachers have prior work experience applying mathematics in 
research, industry, business, government jobs, before training to become mathematics 
teachers, and teachers continually learning from their senior colleagues as e.g. described by 
Liping Ma [4].  

Both as a candidate in coaching courses and as a practicing coach, the author found many 
analogies with his idealized teaching of university mathematics. Many of these involve rather 
common sense issues about a dignified treatment of the students/players, dealing with 
physical limitations (available space and time), the importance of a deep understanding of 
how different topics are interrelated and how this affects the order in which they can be 
learnt, etc. However, this note shall focus on two specific examples: The primacy of problem 
solving activities and clear focus on  one topic at a time with strictly tailored immediate 
corrections.  

2.3 Problem solving  

Many outsiders (and unfortunately, some students, coaches and teachers) think of endless 
repetitive drills as the core of practices in sports and in mathematics classes, alike. While we 
cannot speak for other team sports (but doubt that it is correct for these). Indeed, a key design 
principle for soccer practices is to build these around activities that require continuous 
development of problem solving skills.  
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The obvious motivation is that there are no two game situations that are exactly alike. 
Moreover, without timeouts or electronic communication devices to obtain directions from 
the coaching staff (as prevalent in some other team sports) the game of soccer is 
distinguished by the requirement for continuous decision making by the eleven individuals on 
each team.  

Due to evolutionary reasons humans may have a natural inclination to categorize and 
systematize all possible game situations and develop catalogues of automatic responses. 
However, the beauty of the game and the reason why it continues to attract hordes of 
spectators may well be attributed to its defiance and resistance to be confined in such ways. 
(Think ahead: what makes mathematics so beautiful and attractive?) Indeed, up to the very 
highest levels of international competition, the most common complaint is a widely deplored 
lack of creativity of, in particular, the US men's National team, compare e. g. the USSF 
guidelines [3], or the widely popular recent article [7]. This stands in stark contrast with the 
broadly acknowledged technical perfection and amazing athletic capabilities of the players. 

Guided by this final objective, the recommendations call for developing creative problem 
solving skills right from the beginning. For obvious developmental reasons it is clear that at 
the younger ages (e.g. age eleven and younger) hardly any instruction is about tactics (and 
none about strategy), instead the primary focus is on developing basic ball skills. But this is 
to be done in an environment encouraging creativity and problem solving. The word drill is 
an anathema: drills kill creativity. Following the same principle for the aspiring coaches as 
for the players, coaches are not given a manual of sessions. Instead, the focus is on design 
principles, and coaches are asked to be creative themselves!  

At its easiest, we want practices to not repeat activities. Instead, every week we have 
exercises with different rules. At the younger ages these almost always take the form of some 
game, with rules rigged in whatever way to make the players learn a new skill or technique. 
A fundamental design principle (heeding the rule of the three Ls:” No laps, no lines, no 
lectures'') is to start with incomplete instructions. We want the players to start exercising with 
the ball as quickly as possible, further instructions are added with time. While initially 
considered frustrating for the players, this simple principle does an amazing job at training 
players to come up with creative interpretations of the rules, make new rules, and create 
unscripted solutions. We invite the reader to pause for a second, and reflect whether this 
applies to mathematics instruction? Can we do it? Should we do it? Do we do it?  

A more specific example in the same spirit was recently nicely reiterated by M. Beale who 
works at the Chelsea FC Academy (Chelsea FC in London is one of the premiere clubs in 
professional soccer in the world):  

A crucial idea in coaching young players is to introduce an element of choice into drills and 
practices. For example, instead of telling a player simply to dribble up to a cone and shoot, 
put another player several meters to his right or left and offer the attacking player the choice 
of shot or lay-off. This approach encourages individuality and self-expression and helps fight 
against the cookie-cutter mentality. Ultimately, this will help develop a player's flare and 
confidence.  

If we want to foster creativity, make innovative choices, we must accept that many of these 
choices are not the best ones, many may even quite bad choices. One cannot expect anyone to 
freely explore new avenues if there is any fear of punishment. On the soccer field, this means 
constant encouragement for bold choices and questioning about whether the player thinks this 
was a good choice. During competitive games, this primarily involves discounting numerical 
losses, making players and parents feel comfortable with loosing a game today, but having 
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learnt a lot by making some bold choices. Especially at the youngest age, there is widespread 
agreement that one should deemphasize counting goals and wins as much as possible—as a 
focus on winning all too often only impedes creative player development.  

In a nutshell, we never say “never do this'', we do not prescribe scripted actions, but instead 
encourage making choices and trying unconventional solutions starting at the earliest stages. 
This approach is strongly motivated by designing the curriculum from the final objectives 
backwards.  

2.4 Focus and corrections 

As a 20 year veteran of teaching mathematics at the university level, one of the hardest 
items to learn for the author as a soccer coach was not to try to correct every mistake all the 
time. Indeed, learning from his soccer coaching courses, he has changed his approach to 
teaching mathematics!  

A fundamental design principle of any class/practice is to clearly identify the topic that is to 
be learnt in any single session. In youth soccer these may be simple items as good balance 
(with slightly bent knees), locking the ankle when striking the ball, alignment of the shoulders 
when making a pass, protecting the ball from an encroaching opponent, letting the ball come 
across the body when receiving a pass. The typical session starts with some unrestricted 
activities that explore the concept to be learnt/practiced, then restricts the space and, in 
stages, adds pressure (opponents), continues with practicing the concept/skill in game like 
situations, and ends with small-sided games with rules rigged in a way to foster work on the 
concept.  

As explained above, given limited time resources, the activities start as quickly as possible, 
and usually with incomplete instructions. The experienced coach looks for coachable 
moments, incidents where a player made a questionable choice, and will immediately 
interrupt play to question the decisions. Most typically the player is aware of a bad choice, 
and now is asked to come up with better choices. These are explored and reworked until a 
desirable performance is achieved. What really impressed this author, and what he found so 
hard to do, is the emphatic guideline to only correct missteps that involve this session's topic: 
If today's topic is receiving passes, then the coach is instructed to only correct mistakes 
involving receiving passes, and to (from the player's side) completely ignore whether e.g. a 
player strikes the ball inappropriately, say, with the tip of their toes.  

Does it work? The guidelines by the professional organization say so. But just like the 
mathematics teacher who already knows what works best, many a coaching candidate ignores 
these guidelines. This author has seen many coaches discount the guidelines, and in their own 
clubs try to correct everything at the same time. Anecdotal evidence, players developing 
much better in some environments than in others, has convinced him that it pays to heed the 
advice from experts in developmental psychology. We will revisit this item from a 
mathematics perspective below—but the reader is encouraged to reflect on this now.  

3. Teaching university mathematics 

3.1. Learning on the job 

The author has been teaching mathematics at the post-secondary level for over 20 years—
yet he never received any formal training on how to teach until long after he started. Even 
then, it was purely voluntary participation in workshops which almost counted against him as 
they took time and effort away from the primary research mission of his institution. Basically, 
he was thrown into the water, to swim or sink.  
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Today's graduate students are usually a little better off as they are typically required to 
participate in teaching assistant training workshops. Yet the majority of college and 
university teachers have precious little formal training on pedagogy, and psychology of 
mathematics education. Moreover, in many countries, heated debates continue about the 
proper balance of teaching content knowledge and pedagogy to mathematics (and science) 
teachers at the secondary (and even the elementary) level.  

This author acquired his fragmented understanding of how to teach mathematics in a long and 
painful trial-and-error process, augmented by voluntary participation in workshops, courses, 
and conferences which are in tight competition with efforts related to his primary research 
area. Very limited time is available to go beyond this, to e.g. familiarize himself with findings 
in the mathematics education literature—there are too few executive summaries! Curiously, 
some of the strongest impacts to consciously redesign the classroom teaching come from 
outside the discipline, e.g. from encountering active learning as in Workshop Physics, 
compare e.g. [8], and cooperative learning as e.g. [9].  

This experience does not seem to be unusual, and we note that our discipline is lacking 
systematic mechanisms that ensure that findings from education research are implemented 
into teaching practice in a timely manner. While at the younger levels, recommendations such 
as [10] do have measurable effects, at the higher college levels, the time scale seems to be 
measured only in generations. Let us consider mathematics analogues of the items 
highlighted in the previous section.  

3.2 Problem solving  

It is hard to find someone who does not agree that mathematics is about problem solving. 
However, once we try to more precisely nail down what we mean by problem solving, the 
agreements quickly end. This author shakes his head at the designations given to the last part 
of each section in typical mathematics textbooks, usually “Problems'', and only rarely 
“Exercises”. It takes little reflection to note that the large majority of items in these parts of 
popular algebra or calculus books do not at all satisfy the following characterization [11]:  

A problem is only a problem (as mathematicians use the word) if you don't know how to go 
about solving it. A problem that has no 'surprises' in store, and can be solved comfortably by 
routine or familiar procedures (no matter how difficult!) is an exercise. 

Let us accept that the starting point for curriculum design should be its end: what we want the 
successful graduates to be able to do and to know. One may question the importance of 
problem solving skills in mathematics. This author takes the stance, that, in particular, with 
the virtually ubiquitous access to networked universal information systems, problem solving 
skills as in Schoenfeld's characterization above [11] are becoming ever more important in 
mathematics. On the other hand, drill of manually executing routine algorithms becomes ever 
less important—as the very straightforward nature of traditionally taught algorithms makes 
them predestined to be programmed on and executed by machines.  

If we accept this view, the question arises how to most effectively design mathematics classes 
at all levels. There has been much controversy and discussion over the balance of drill of 
basic manual manipulations versus other contents such as conceptual understanding and 
problem solving skills. One of the most fervent opinions about abolishing traditional items 
was elaborated in [12], and it appears that this opinion is standing the test of time! Certainly, 
the large majority of the secondary and college entry-level mathematics courses taught 
around the world emphasize drill over problem solving, even while there are calls from all 
sides to devote more attention to problem solving. But how to do this?  
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This author took lessons learnt while coaching soccer into his classrooms (and into activities 
with his children when at the primary school level). The first guideline is so simple: start 
right away, typically with incomplete instructions! Initially the reaction is one of frustration, 
sometimes even anger—but it does not take long and students at all ages turn out to be a lot 
more resourceful than many a teacher may believe. No long lectures, long demonstrations, 
detailed worksheets—instead, start student centred activities with only rudimentary 
instructions. In the last few years, the author has been mostly teaching courses at the upper 
undergraduate level such as Advanced Calculus / Intro to Analysis, Abstract Algebra, Intro to 
Topology. At this level, the key is to reverse the traditional order of axiom - definition - 
lemma - theorem -proof - example. Instead, we start with a vaguely circumscribed setting, 
some intriguing observations and invite exploration and conjecture. Theorems are proposed, 
but they do not have precisely stated hypotheses—instead the hypotheses, and often even 
good definitions are outcomes of the process of trying to prove a theorem that captures the 
main idea. At this first sight this approach may appear to be opposite to the Moore 
method[13] but our teaching experiments, even in Moore's home turf of point set topology 
indicate otherwise: The common goal is to foster problem solving skills by providing suitably 
challenging activities. Over the last years we have experimented with various details of this 
approach—but the highly successful classes attest to the focus on problem solving being the 
key. A critical ingredient for making these successful is to establish an environment of no 
fear, of mutual respect for even the wildest ideas. In practical terms, this involves the whole 
class, or small groups engaging in prolonged brain-storming sessions during which no 
criticism is allowed. These are followed by periods in which all ideas are explored—and 
quite often we develop ideas and proofs on the board which turn out to be dead-ends. These 
are not at all futile efforts, in some sense they are so much more important than the polished 
proofs presented in the textbooks. Credit is always given for the creative ideas!  

As a simple, easily accessible example from (advanced) calculus consider the inverse 
function theorem, which captures the intuitive picture of a function being locally invertible 
near a point where its graph has a nonzero slope. The mathematics problem (in the advanced 
calculus class) is to make this picture into a theorem, and prove it. The picture is quick, and 
provides incomplete information. Indeed, one of the main challenges is to decide what should 
be part of the hypothesis, what be part of the conclusion—the main issues are regularity 
assumptions on the function and the existence of the inverse. A sampling of a handful popular 
textbooks reveals almost any combination of such choices.  

Let us end with one practical example from arithmetic: This father all too often was annoyed 
with the rigidity of his children's math worksheets. One extreme example involved long 
division. Rather than arguing its intrinsic merits and importance [12], our point here is its 
similarity to the above described repetitive soccer drills. Just like in a game situation, there 
should always be choices that have to be made. The easiest, and likely most natural one for 
any mathematician is to rewrite the division problem as a fraction, simplify it by cancelling 
common factors, or by multiplying numerator and denominator by powers of two or five, and 
then work a simpler division problem, if still necessary. Yet, the author's daughter insisted 
that this was not allowed—she had to exactly follow the prescription, no creative shortcuts 
were allowed.  

In summary, starting from the ultimate objectives for the graduates, the author considers the 
development of creative problem solving skills one of the most important tasks in 
mathematics teaching. In order to achieve the goals, he consciously chooses activities that 
demand creative work, making choices, exploring without fear of punishment, and at the 
same time absolutely minimizing rote repetitive drill exercises.  
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3.3. Clear focus: one item at a time 

It may sound so simple—focus on one item at a time. After all, don't our textbooks and 
syllabi typically specify one single topic for each class? This is comparatively easy for 
lectures. For student centred classes the first major challenge is to break the tasks into bite-
size chunks—which can be attacked one at a time. See [14,15] for a masterful 
implementation in a modified Moore style of such break-up, and a detailed discussion and 
reflection on these challenges.  

Yet, in his experiments with student centred classrooms, this author did not get the message 
until he consciously reflected on his correcting players as a soccer coach: Indeed, he found it 
exceedingly difficult to only correct mistakes (or rather interrupt for questionable choices) 
that were directly related to the particular session's topic. It is very hard to quell the urge to 
admonish any unrelated “why did you not take the shot?”, “did you not make that open 
pass?”, “do not kick with your toes”, “use the other foot,” “let the ball come across your 
body?”, ... Indeed, the routine way focuses on one topic only, and uses questioning as 
opposed to telling what to do: “if you could do it over again, would you make the same 
choice?” what else could you have done?”  

Yet personal experience convinced this coach that the professional guidelines were right after 
all, and he eventually learnt to follow them.  

The next step: Reflect how this relates to teaching (in this case, university level) mathematics. 
Clearly we focus on one topic at a time (do we?). In lecture-format classes one is to avoid 
distracting digressions. But what about teaching in the modern student centred classroom, 
where students work in teams, present work on the board, routinely interject ideas, some of 
which are really far off the wall? Once he realized the analogies, this author caught himself 
looking for all possible kinds of mistakes and less than perfect choices at the same time, 
wanting to correct all of these all the time. In USSF soccer coaching education, this is an 
absolute no-no, and a guarantor for failing the examination, not earning a coaching license.  

It is a long way from recognizing a likely deficiency (trying to correct everything at all 
times), to mediating it. The author has consciously tried hard to not only clearly identify the 
technical mathematics topics that are the subject of each class' meeting, but also the items 
that shall be subject to discussion and correction upon student discussion and presentation. 
Typical items, again at the levels of Advanced Calculus, Intro to Topology, Abstract Algebra, 
and, most recently, a Second Course in Differential Equations include writing, arithmetic and 
basic algebra, logic (implications and their converses, alternating quantifiers), meticulous 
attention to all hypotheses (especially regularity assumptions), utilizing (building on) 
previously established results. While purely anecdotal, the author has become convinced that 
in the student centred mathematics classroom—just like in the youth soccer practice—
learning success substantially increases if the instructor does not try to fix all problems at the 
same time. In his most recent topology class, he informally laid out a parallel time-table for 
correctible items as above. These include e.g. grammar and punctuation, slang versus formal 
language, proper use of prepositions for mathematical relationships, not using any symbols 
that have not been quantified before unless they have been assigned a value). This 
accompanied the official syllabus which focused on technical topological structures. Rather 
than being a linearly ordered sequence, it naturally had a semester-long, more circular 
structure with various items being revisited repeatedly. A typical example is the simple 
logical structure of most compactness proofs that use the open cover definition: While being 
addressed relatively late in the semester, this is a typical point where to again focus on the 
logical structure of the arguments, especially the innocent looking part “every open cover of 
...” which all too often is incorrectly employed in various proofs. In practical terms, this 
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simply means to develop a set of activities involving items that addresses both related logical 
issues and some compactness property. In presentations and discussion, we downplay, or 
even ignore, all sorts of other mistakes, misconceptions, misstatements, and focus on every 
student getting the key logical issue right 100 percent of the time.  

At the author's institution, the second course in Differential Equations (the first course on 
their qualitative theory) is distinguished by having several different prerequisites: A first 
(calculation oriented) course in Differential Equations (DE), a first course in Linear Algebra 
(LA), and Advanced Calculus (AC). The large majority of students in this course have major 
deficiencies in more than one of these, often due to mismatches to courses taken at the 
institutions from which they transferred. While barely changing the core syllabus for this 
class, the author consciously aligned the learning objectives in such a way that students had a 
chance to make up any gaps in the prerequisites—one issue at a time. While having three 
such different prerequisites for one course first appeared to cause extra problems, it turned 
out that this forced the author to consciously reflect on and plan how to bring in each one of 
these. In daily practice this meant that mistakes in any areas other than the ones focused on 
were most casually downplayed, or sometimes even ignored. This required choosing the 
examples addressed in class activities in such a way that desired mistakes would likely 
appear repeatedly, whereas off-topic mistakes be less frequent.  

In the end, it remains a major challenge when grading papers (homework, exams, ...) to focus 
on one designated item to be corrected, and not get side-tracked into marking every mistake 
at the same time. The ultimate goal is that all students master all topics, satisfy all criteria. It 
is possible to focus on clearly identified subsets on individual exams. A careful design of 
problems assigned or test items selected helps a long way, but it will take many rounds of 
experimentation to perfect this.  

In summary, for traditional lecture-style classes it is comparatively easy to focus on one item, 
and in the wrap-up at the end summarize the one (or three) items to take home. In student 
centred classes, a critical component is learning from one's mistakes—and it is a real 
challenge for the teacher (coach) to focus on correcting only one kind of mistake at a time.  

4. Summary 

This article reflected on similarities between effective strategies for teaching mathematics 
at the postsecondary level and coaching youth sports. Rather than attempting deep 
explanations in terms of general learning theories, the focus was on practical, day-to-day 
activities. We focused on two specific topics: the desired focus on activities that enhance 
problem solving skills, and on the desirable habit of the teacher/coach restrict and focus 
her/his feedback on one item at a time.  

Whereas neither of these two individual parallels may prove truly important, we hope that 
this note encourages all teachers to become ever more open-minded, and actively search for 
insights into what constitute best practices, and for innovative teaching strategies in even the 
most far-fetched and most remote places. In the end, teaching and learning of no matter 
which subject all involve the same human organ!  
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Dynamic visualization in advanced undergraduate courses 

MATTHIAS KAWSKI* 
Department of Mathematics and Statistics, Arizona State University 

This article presents and discusses selected uses of interactive dynamic visualization tools, such as the JAVA 
Vector Field Analyzer II in advanced undergraduate and beginning graduate courses, foremost advanced courses 
in differential equation and dynamical systems.  

Keywords: Dynamic visualization, Lyapunov, Poincare-Bendixson. 

1 Introduction 

 The advent of inexpensive computing technology has dramatically changed the way many 
mathematicians do mathematics, and the way many students and teachers learn and teach 
mathematics. This is an ongoing revolution, and no end is in sight. Among the many different 
ways that computing technology may be employed in mathematics, one of the most intriguing 
ones is for interactive and dynamic visualization. It started in the 1980s when then first 
personal computers became available, with such visionary work as e.g. [1]. The technical 
revolution continues at an ever faster pace. Nowadays one needs little more than a JAVA-
enabled WWW-browser and an internet connection to do truly exciting mathematics. And we 
still are looking forward to many possibilities that currently we only dream about—such as 
instant computations and rendering in 3D. The author's dream is an instant computation of 
curvature and geodesic spheres for control and subRiemannian geometry, manipulating 
theses instantaneously by dragging the mouse.  

The technology has invaded classrooms in different areas and levels at very different rates, 
for reasons that we may only speculate about—but this is not the place to do so. Likely the 
late secondary and introductory post-secondary level are among the leaders with topics such 
as parameterized families of functions in precalculus, calculus, and the first course 
differential equations. Both at the earlier and the later stages we seem to see comparatively 
less use of computing technology for interactive visualization. Similarly, there have been 
many formal studies about the benefits of such technology and the utility of visual images for 
developing concepts primarily at these same levels centred about calculus, but also some 
others, including at the postcalculus levels—we only refer to the recent study [2]. 

One common issue that severely restricted the use of such technology was the, real or 
perceived, start-up costs. Computer algebra systems and similar packages are widely 
perceived as demanding very high start-up costs. These include both the learning of syntax 
and the actual launching of the program. A notable opposite is the well-known Famous 
Curves Applet [3] which requires virtually no preparation, yet invites almost limitless 
experimentation. In our context of an advanced course in Differential Equations, we mainly 
rely on the similar JAVA applet Vector Field Analyzer II (VFA2) [4]. It is based on an earlier 
program [5] that simply tried to allow experimentation in response to the question [6]:  
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“If zooming is so much better (than disappearing secant lines) for understanding 
derivatives in calculus I, why not zoom in on vector fields to see and understand the 
curl and the divergence?” 

This applet also includes additional functionality to visually connect vector calculus and 
differential equations. The key is to experiment with the flow of a vector field (or differential 
equation) acting on a solid region (as opposed to just plotting integral curves for initial 
conditions specified as discrete set of points.)  

There are many similar dynamic visualization packages available for differential equations 
and dynamical systems, compare e.g. the extensive suite of the ODE Architect [7] or the 
many resources at the Dynamical Systems and Technology Project at Boston University [8]. 
We like the VFA2 for its instantaneous start-up and trivial syntax, while inviting new kinds 
of experiments far beyond the original design.  

There does not exist a comprehensive write-up of suggested experiments and uses of this tool 
at the level of vector calculus and the first course in differential equations, but many users 
around the world have found their ways of employing it. This article and presentation is 
focused on unanticipated uses in higher level courses, foremost the advanced undergraduate 
or graduate level theoretical courses on qualitative studies of differential equations. We also 
have used the tool very effectively in powerful ways in graduate level courses in complex 
analysis (no surprise, given the ideas in [9]), differential geometry and control theory.  

Such higher level courses usually have very densely packed syllabi of theoretical material, 
and high expectations on the students' prior knowledge. Thus it is no surprise that many an 
instructor does not believe that it is possible to squeeze in some computer work. However, we 
found that with the extremely quick start-up we routinely use the VFA2 now also in many 
graduate courses, as each demo or experiment only takes a minute or two, or even less, yet 
imparts such powerful images that many students indeed did not bring with them, but which 
are the foundation for many modern theories, compare e.g. [10].  

Typically, we employ the tools as a backdrop for a class discussion, often to perform 
experiments suggested by students. This usually takes much less time than a minute. Where 
available, we also have used the tool in small group settings where each table of students has 
its own computer. Moreover, students use the tool routinely at home for quick explorations 
and cross-checking. Distinctively different from common uses of e.g. computer algebra 
systems or graphing calculators in calculus classrooms, our experiments are never scripted. 
Instead, the tools are used instantaneously when a mathematical question comes up which is 
such that the students want to take a closer look.  

2 Existence of periodic orbits in one dimension  

Our first example is from the first chapter of the textbook [11], which is a modernized 
version of the classic [12]. It takes into account the influences of three decades of technology 
on the modern study of differential equations. In its modern style it immediately sets the stage 
for the topics to be studied later in the course, and for the character of the modern approach. 
Here we consider the logistic differential equation subject to periodic harvesting  

))2(sin1()1( 2 xhyayy π+⋅−−=′  

This example follows a first foray into the world of bifurcation theory. More specifically, if 
e.g. 1=a , then the logistic model with constant rate  h  of harvesting hyayy −−=′ )1(  will 
have two distinct positive equilibrium solutions if 4

10 ≤≤ h  corresponding to sustainable 
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harvesting. These coalesce into a single one at 4
1=h . If  4

1>h  then every solution that 
starts with a positive initial population faces extinction in a finite time.  

Most students have seen the logistic model without harvesting in their first course in 
differential equations. Already for the case of constant harvesting hyayy −−=′ )1(  it is 
quite challenging to obtain closed form solution formulas. Even computer algebra systems 
such as MAPLE require quite sophisticated tweaking before they yield all solutions (on both 
side of the bifurcation). Indeed, this example beautifully coaxes the students towards more 
graphic arguments and qualitative studies.  

The next question, which really is a lead-in into Poincare-Bendixson theory studied at the end 
of the course, asks whether the equilibria persist as periodic orbits if the harvesting are and 
oscillations are small. The teacher's objective is to encourage topological ways of thinking. 
However, the author's students had very little experience thinking graphically.  

 
Figure 1. Existence of periodic orbits for logistic growth with periodic harvesting 

 

Starting up the VFA2 is instantaneous, enter the formula for the differential equations, press 
plot, and scatter some initial conditions with the mouse. The only advanced feature is to turn 
on the cylindrical model for a state-space which is the natural home for periodic vector fields. 
This means that as solutions leave on the right edge they come back on the left. One or two 
minutes of experimenting with different initial conditions led most everyone in the class to 
have a strategy in mind on how to prove the existence of at least two distinct periodic 
solutions, compare the static screenshot shown in figure 1. Given just this little help with the 
VFA2, a few minutes only, these students basically discovered the concept of a Poincare map 
on their own. Still having almost the whole class period available, it was now very easy and 
fast to develop the theory in detail.  
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Figure 2. Poincare Bendixson theory 

 

3 Poincare Bendixson theory 

At the end of the semester, our senior and first graduate level course in differential course 
studies the existence or lack of periodic orbits for planar systems. The main tool is the 
Poincare Bendixson theorem, compare e.g. [13].  

Theorem 3.1. Suppose that 2RD ⊆ is open and connected, 2: RDf a  is locally Lipschitz 
continuous. Suppose C is a bounded positive semi-orbit of )(yfy =′ with positive limit 

set +L . If  +L  contains no equilibrium point, then it is a periodic orbit.  

While the technical statement is quite intimidating, its message is extremely intuitive from a 
graphical point of view. Unfortunately, the majority of the students in the author's class did 
not have well developed graphical reasoning skills and were hesitant to use even the little 
they had. Again we found that it took just one or two minutes to start up the VFA2 and 
provide some stunning and compelling dynamic images that clearly demonstrate what this 
theorem says, and how it is typically employed. Figure 2 shows a screen shot for the 
following example taken from [13, p.309] 

2)2(2, yyxyxyyx +−+−=′=′  
 

We found that after students could play, modify, and experiment so effortlessly with various 
systems on the VFA2, they found it easier to systematically work the usual exercises, to 
proceed strategically, establishing the invariance of some bounded region (usually 
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topologically an annulus) that does not contain any equilibria. Moreover, the visual 
experiences did not only have helped with the acceptance of the theorem, its application, but 
also with the understanding of the outline of the proof which is an indispensable item on the 
syllabus. 

4 Absence of periodic orbits: Bendixson Dulac criterion 

The Poincare Bendixson theorem is routinely used to establish the existence of periodic 
orbits. Complementary to it is the Bendixson Dulac criterion which is used to establish the 
absence of periodic orbits, compare e.g. [14].  

Theorem 4.1. Suppose that 2R⊆Ω  is simply connected bounded open domain, 2: Rf aΩ  
and  RaΩ:β  are continuously differentiable. If  )div( fβ  does not change sign in Ω  and 
is not identically zero on any open set, then the system )(yfy =′  has no periodic solution 
lying entirely in Ω .  

 

  
Figure 3. Two graphical views of divergence 

 

Again, for a graphically thinking person this is completely intuitive, and the picture actually 
provides a feasible strategy for a simple proof, using Green's theorem in the plane. In a 
nutshell, if  C  is a periodic orbit, then the vector field  f must be tangent to  C  at all points on 
C. Consequently the flux of  f  across  C  is zero. Hence, by the divergence form of Green's 
theorem, the integral of the divergence of  f  over the bounded region inside  C  is also zero. 
This establishes the contrapositive of the theorem. The function β  changes the lengths of the 
arrows, leaving the argument intact.  

For students who learned their vector calculus in a graphic way similar to the 
development in [15] which in turn follows the classic physics text [16], both of which 
motivated the VFA2, this is a very translucent argument. Figure 3 shows two different 
screen-shots providing the zooming and the flux integral point of view. However, the large 
majority of our students have much weaker mental graphical images of divergence. Our test 
case was the vector field ( )322

3 ,),( yxyxf −=  whose divergence 0),(div 6
1 <−=yxf  is 

constant negative.  
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Figure 4. Misconceptions about (positive) divergence 

 

The graphical image of the vector field, with overlaid solution curves of the system 
),(),( yxfyx =&& , compare figure 4, nicely shows that (in this region) all solution curves go 

away from each other. Indeed, in the author's class last year, more than 20 advanced 
undergraduate and beginning graduate students, many with very good credentials 
unanimously agreed that this vector field must have positive divergence (in the region shown 
on the screen). This is not at all unexpected misunderstanding.  

  
Figure 5. Misconceptions about (positive) divergence 

What we did differently was to use the VFA2 for a minute to dynamically visually set the 
record straight. Indeed divergence does NOT measure whether solution curves go away from 
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each other (a concept more related to stability, and of primary importance in numerical 
computations), but instead divergence measures the infinitesimal rate of expansion (rate of 
change of area)—one of the primary objectives for the VFA2. Unfortunately in this paper 
version, figure 5 can show only two suggestive screen shots and again have to appeal to the 
imagination of the reader. All students immediately grasped what was happening when 
confronted with the dynamic version: The vector field is such that solution curves go away 
from each other, but they slow down even more. Consequently, a rectangle (aligned with the 
coordinate axes) of initial conditions stretches vertically but becomes squished even faster 
horizontally. This results in a net decrease in volume/area.  

5 Lyapunov stability, invariant regions, and Lasalle's theorem 

Elementary stability theory relies on two basic pillars: The more algebraic approach 
analyzes the spectrum (set of eigenvalues) of the linearized system about an equilibrium 
point. The much more graphic direct method of Lyapunov abstracts the concept of passivity 
and an energy function that is nonincreasing along trajectories. A simple version of the main 
theorem is:  

Theorem 5.1. Suppose nn RRf a:  and RRV n a:  are continuously differentiable. 
0)0( =f  and 0)0( =V , V is proper and positive definite and the directional derivative 

fVVLg ,grad=  is negative definite. Then the origin is a locally asymptotically stable 
equilibrium of  )(yfy =′ .  

Figure 6 shows pictorially the main ideas, and, in particular, demonstrates the importance that  
V be proper (i.e. preimages of compact sets are compact), as otherwise  V  might be 
decreasing along solution curves, yet these still run away (as depicted in the slowly 
increasing trench). This artfully crafted image has its own story: the key to a nice and useful 
picture is to have asymptotically linear growth, not the expected quadratic growth of typical 
convex functions. But this is a static image, and it did not help much with the large majority 
of our students who were weak both in their fragmented understanding of positive 
definiteness and of invariant subsets.  

 
Figure 6. Pictorially: The importance of being proper 



 98

Again some playful experiments with the VFA2 made all the difference. In particular, we 
used the visual representation of the flux across a curve to study the invariance of the 
bounded region inside that curve. In turn, positive definiteness and properness went along 
with connected, simply connected and bounded sublevel sets, and hence with level sets that 
are simple closed curves. It turned out to be quite fortunate that the VFA2 only allows to 
study one curve at a time (on the line integral panel) as this focuses the students' attention. 
Studying an image that simultaneously shows many level curves is simply too demanding. Of 
unexpected utility was the feature of the VFA2 that allows one to translate, resize or reshape 
the curves for line integrals—and thus explore other candidates for level curves of Lyapunov 
functions. (Mathematically, homogeneity with respect to some general group of dilations 
often leads to the general argument.)  

The VFA2 was even helpful when trying to go one step further, to Lasalle's invariance 
principle. This relaxes the requirement that the orbital derivative VL f  of  V  along solution 
curves be strictly negative definite to negative semidefinite. In turn it requires that the largest 
f-invariant subset contained in the preimage ( ) )0(1−VL f  be the origin itself. In this case the 
same conclusion holds. Figure 7 shows one poor (when compared to dynamic experiments) 
static screenshot of investigation of  22),( yxyxV +=  as a candidate Lyapunov function for 
a viscously damped pendulum  xxx ′=+′′ βsin . This illustrates that  00)0,( </=xVL f  , i.e. 

)( VL f  is only negative semidefinite, hence calling for the use of Lasalle's theorem. In turn, 

pictorially it is clear that the largest invariant subset of  ( ) )0(1−VL f  is }0,0{ .  

 

 
Figure 7. Lasalle's theorem and a viscously damped pendulum 



 99

4. Summary 

In summary, this article discussed the need for, and usefulness of live, interactive, and 
dynamic visualization tools in advanced undergraduate and graduate classes. Anecdotal 
evidence suggests that the students' visualization skills and capabilities are all too easily 
overestimated. In turn, modern tools such as the VFA2 which was designed for open-ended 
experimentation may be used successfully beyond lower level undergraduate courses. Critical 
to make the use of such tools feasible in courses with packed curricula are minimal start-up 
time (both syntax and launching time). Traditional computer algebra systems have shown to 
be less practical in advanced undergraduate classes where students did not have much prior 
experience. Custom-made JAVA tools such as the VFA2 designed for open-ended 
experimentation requiring minimal investment (i.e. learning how to use them and launching 
time) appear more suitable for theoretical classes. 

Our experience strongly suggests that even in advanced courses with a traditional emphasis 
on theoretical issues there are many places to employ modern dynamic visualization and 
experimentation tools.  
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Abstract 

 

It is now generally accepted that pre-service teacher training is a critical issue in the 
integration of ICT into the teaching of mathematics. This talk will address two facets of the 
use of the dynamic geometry environment Cabri-geometry in pre-service teacher education 
for secondary school: as an environment for learning mathematics on the one hand, preparing 
future teachers how to integrate dynamic geometry into their teaching on the other hand. In 
both kinds of use of technology, the change in the nature of the representations of 
mathematical objects and in the ways of operating on them may deeply affect the 
mathematical activity. 

One of the main novelties of dynamic geometry lies in the mediation of the notions of 
variable object and of variation through the dynamic manipulable representations of objects. 
In the first part, it will be shown how dynamic geometry may reveal the conceptual 
difficulties of university students about the notions of differential equation and of solution of 
such an equation and how the tangible representation of a variable solution may foster more 
understanding of these notions. In the second part, by means of the example of a year-long 
teacher preparation to integrate dynamic geometry into their teaching practice, the 
instrumentation process of the dragging by teachers in order to design tasks promoting 
mathematical learning will be analyzed. 
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Exploring 3D Visualization and Measurement Using 
Cabri 3D 
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Abstract 
 

Cabri 3D is a dynamic math environment with dedicated 3D tools. Presentation will focus on 
ways to support the development of students' intuitions about formulas and relationships 
between objects. Explorations and visualizations are enhanced with Cabri3D bringing this 
time, direct manipulation and dynamic philosophy to the world of 3D-objects.  
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Didactic sequence for the construction of the concept of a 
function limit 

GRACIELA LAZARTE, NÉLIDA PRIEMER * 

Facultad de Ingeniería, Universidad Nacional de Jujuy, Argentina 

 

Abstract 

 

Students may appear to understand the delta-epsilon definition of the limit of a function 
though they can complete the algorithm process without any conceptual awareness.  In an 
attempt to improve this process, a didactic strategy for the teaching of this topic for first year 
students has been introduced at the Facultad de Ingeniería. This paper will discuss the design, 
activities and the results of the implementation of this strategy 
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The reality of the transition from high school to university 
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Facultad de Ingeniería, Universidad Nacional de Jujuy, Argentina 

 

Abstract 

One of the main purposes of mathematics teaching in the primary and secondary level is to 
develop logical thought processes and a capacity to build upon previous knowledge.  Unless 
this is moderately successful, the student may experience difficulties in further studies at 
university. 

The mathematical content at secondary level connects the student with simplified situations 
of real life. The development of logical tinking is usually unattended,  and the difficulty of 
mathematical content taking precedence in the learning plan, which often leads to students’ 
tendency to generalise from particular cases. This generalisation includes concepts and 
procedures, creating epistemological learning difficulties.   

The causes of student disengagement with the university are related firstly to the mismatch 
between the students’ expectations and the big demand of a complex university institution, 
and on the other hand, with the lack of elements and guidance related to an impoverished and 
insufficient preparedness for tertiary studies. 

A frequent complaint is that students ‘don't study theory’ or ‘they don't read the text books’. 
If learning mathematics is compared to learning a new language, then the domain of that 
language should be verified, with regard to its rules, symbols and involved logic that can be 
notoriously different to that of common usage. 

General guidelines can be formulated for teaching and learning strategies in common core of 
mathematics that allow the development of abilities and may solve these difficulties. 

 

Keywords:   transition from high school to university 

2000 Mathematicas Subject Classification: 97D70; 97C60; 97B20 
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problems: experiences in informatics’ engineering courses 
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One of  the essential issues in Mathematics Education at the undergraduate level is Problem Solving, due to the 
close relation this activity has with students motivation. It has been stated that for making mathematics courses 
relevant to engineering students “the subject has to be made to seem valuable for their own specialisation and 
future cases” (Wood et al.). According to this, many books focus in “real life problems”, but in the majority of 
cases these are physical problems (examples from areas like Mechanics, Electromagnetism, Thermodinamics; 
etc. had been traditionally used). Despite this kind of examples could be appropiate for some engineering 
courses, they are not closely related with some other courses, as for example, Informatics. In this paper, we 
examine Scene Analysis problems for mathematics courses. This is a novel area of Artificial Intelligence in 
Informatics, but particularly interesting for mathematics education due to its Statistical, Numerical Analysis and 
Discrete Maths contents. We describe some experiences performed in University Engineering Courses, where 
problem examples are presented in a simplified version to a group of students and they are asked to solve 
different aspects of it using statistical tools and numerical methods. The mathematical richness of this new 
problem, allowed teachers of Mathematics and Artificial Intelligence, to propose interesting projects to the 
students of Statistics and Numerical Analysis courses. 

  

Keywords:  Scene Analysis; Project-work; Numerical problems. 

2000 Mathematics Subject Classifications:  15A18; 62F15; 68T45 

 

1  Introduction 

Problem Solving is one of the main topics in Mathematics Education at the 
undergraduate level. Actually, it is closely related with motivation when Mathematics is 
taught as a service course. For example, Wood et al. [1] stated that “To make a mathematics 
course seems relevant to engineering students –and hence worth an investment of time –the 
subject has to be made to seem valuable for their own specialisation and future cases”. 

In most text books “real life problems” means “Physical problems”. Moreover, the word 
“applications” usually refers to different situations of Mechanics, Electromagnetism, 
Thermodynamics, etc. (see for example Zill [2]). In other cases, this word is used in 
connection with Geometrical problems [3]. As a result, in Informatics field, it is not easy to 
choose through real-life problems closely related with their main areas of interest. 

Scene Analysis provides interesting problems that can be used to illustrate how to use 
different mathematical tools in several courses like Statistics, Numerical Calculus, etc.  

When Mathematics is taught to University students, problems must be chosen carefully in 
order to motivate without confusing them. This can be the case when tools and/or concepts 
which are very difficult to be understood at a certain level are introduced. 
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In many cases, an interesting choice is presenting a sophisticated mathematical tool or 
concept in a preliminary version, immersed in a motivating context. To achieve this goal, 
these concepts and tools must be in the Zone of Proximal Development of the students [4]. 

In this experience, real-life problems are used as a source for project-work, at the ORT. 
University, in the Republic of Uruguay. In this paper, a real-life problem is presented in a 
simplified version to a group of students and they are asked to solve different aspects of it 
using statistical tools, numerical methods, etc.  

A statistical, analytical or numerical approach is required, depending on the course 
considered. In ORT University, students of Engineering careers have different mathematical 
courses such as Numerical Calculus, Statistics and also Artificial Intelligence. In these 
courses mathematical methods are implemented.  Depending on course’s methodologhy, 
sometimes students can choose between the “traditional” assessment (consisting in typical 
written evaluations) or a project-work. In some courses, they can join in a group of no more 
than three students where they are supposed to solve a simplified real-life problem, with 
some help and/or orientation from teachers. 

In this experience, the proposed problem must be a non-trivial one, but, on the other hand, it 
must be an interesting problem with a high degree of difficulty, so it usually needs a Didactic 
Transposition [5], in order to convert the original problem in a suitable version for university 
students. 

Several examples of this kind of problems for these courses were presented in previous 
papers ([3] and [6]). In the next section, an even more complicated problem than those 
already mentioned, will be described. The mathematical richness of this new problem, 
allowed teachers of Mathematics and Artificial Intelligence, to propose interesting projects to 
the students of Statistics and Numerical Analysis courses. 

2.   Numerical Techniques for Scene Analysis 
Artificial Vision is a field that had great development in recent years. Different 

techniques have been applied, such as Neural Networks, Mathematic Morfology, Machine 
Learning, Clustering and also Numeric Techniques. Despite of this, several problems are still 
unsolved, specially those related to what is called scene analysis [7][8], that means 
recognizing different objects and their background from an image. Several researchers are 
working in this unresolved task [7][9][10]. In this research line, lets see how numerical 
techniques, specially Principal Component Analysis (PCA) can be combined with Neural 
Networks for this task. 

As our goal is proposing general techniques –not only applicable for “toy problems” – we 
analyzed general case images (real colour of 32 bits) usually called RGB, because each pixel 
has three components: Red, Green and Blue, and their proportion (the range is 0-255) 
determines the colour. First, we need to normalize values with a conversion function from 
three-component vectors to unique values. This function has to fulfil the following properties:   

1. The function has to be biyective, as its necessary both normalize and un-normalize. 

2. It has to be continuous and monotone, for allowing interpolation. 

3. It needs to have a good dispersión level, to avoid bad conditioning problems. [11]. 

To achieve this points, we used an aggregation model, that can be expressed as a polynomial: 

y  =  r +  256 * g + 2562 b 
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By the way, as every polynom, this conversion fulfils continuity and it is also monotone for 
RGB inputs. Dispersion level is acceptable, altough it could probably could be optimised 
using non-linear functions. 

 

 
                       Figure 1.  RGB standarizing            

In the following phase we proceeded to reduce image’s matrix dimension using Principal 
Component Analysis. This is a technique of feature detection based in statistic measures. The 
goal is to detect data correlation level, in order to extract data with the higher level of 
information. 

Here we describe the procedure used:  

We have a vector of n elements with p dimensions. 

1. First we calculate Covariance matrix    

2. We apply the following calculation 

                                             p 

                      Cx ( xj, xk ) = ∑ ( xij - µj ) (xik - µk )       where    µj = (  ∑ xij ) / n.   

                                             1 

This represents the dispersion level of each variable with their means. 

3. Now, we need to calculate matrix eigenvalues 

This can be analytically calculated (power method) or numerically (Givens or Jacobi 
methods). In our case we applied Jacobi method for performance reasons. 

4. With the eigenvalues, now we calculate the eigenvectors  

    Cx ei  = λi ei 

Once obtained, we order them in descendent order, with the result that first elements 
represent the “maximum energy level” [12]. With this order vector, a fixed (or even variable) 
number of less significant values are removed. 

5. The following step is calculating the transformed matrix 

This can be done by using a linear transformation to the eigenvectors. 

Calling E the matrix of obtained eigenvectors, we calculate the transformed values y, by: 

     y = E( x – µ ) 

and the inverse process –the original matrix reconstruction, also vectorially expressed: 
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     x = ET y + µ        

taking into account that real symmetrical matrixes fulfill  E-1 = ET . 

This matrix represents the original image with reduced dimensions. Finally, we use the un-
standarizing function described before to obtain the RGB corresponding image.  

These images were later used as an Artificial Neural Network input, to recognize simplified 
images, using the Conjugate Gradient algorithm. but the description of this complex 
techniques is beyond the scope of this paper. Some of this techniques we have already 
described in a previous work [13]. In Figure 2 it can be seen several tools implementation of 
this numerical techniques for scene analysis: 

 

 
                        Figure 2. Tool for Scene Analysis 

 

Here we can see the RGB normalize and un-normalize functions used and pattern 
identification.  

3.  The educative view-point 

The problem proposed in the last section, was effectively used as a source of different tasks, 
examples and project-work for students. Moreover, this problem can be useful at least for the 
"islands approach" and/or the "mixing approach", mentioned by Blum and Niss in a well 
known clasic paper [14]. 

For instance, the original version has, at least, two different possibilities: the first one consists 
in using this problem for an Artificial Intelligence course and the second one is to use this 
problem as a project-work in a Statistics and/or Numerical Analysis course. The following 
examples illustrate this possibility: 

Project-work Nº 1:  Numerical methods in PCA. Eigenvalues and eigenvectors. 

Project-work Nº 2: Statistical measures for reduce data dimensions. Covariance matrix, 
functions to use. 

 Project-work Nº 3:  Descendent Gradient and Conjugate Gradient methods for convergence 
in Neural Networks. 
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Obviously, there are other possibilities and combinations that can be proposed to the students, 
depending on the topics to be assessed and the total time to be used for these activities. 

As it was mentioned before, this problem and others (see for example [3] and [6]) were 
widely used in the classes (as a source of examples) in the course notes and in different 
project-work proposed to the students. 

This project-work can be chosen instead of the traditional evaluation (written exercises and 
problems) in order to approve the courses. It is important to mention that only the students 
who were approved in the courses (by traditional assessment or by project-work), can be 
evaluated in the final examinations. 

4        Results and Conclusions 

In a previous paper, an expert group was consulted about Mathematics teaching and 
learning at the undergraduate level, focusing in the specific case of Engineering careers [15]. 
Almost all the experts remarked the importance of teaching significant concepts and 
procedures in service courses. On the other hand, Engineering students showed an important 
preference for teachers who make the effort of presenting real-life problems, related with 
their own careers [14]. 

In the same way, when students of Statistic and Numerical Calculus were consulted about 
these courses, they react positively to this style of teaching, were mathematical problem 
solving and applications are taught through motivating examples. Moreover, they enjoyed 
working together in project-work, applying the different concepts, tools and techniques to 
solve them.  

Other aspect, very important to be considered is assessment. The evaluative process must not 
be dissociated from the style of teaching. So, if courses are oriented through problem-solving, 
modelling (no estoy seguro si es asi, el corrector no la reconoce, pero en un paper anterior 
figura de esa manera), etc., then, assessment must be carried out in the same way. This 
purpose can be put into practice through project-work, where students – with orientation of 
an interdisciplinary team of teachers and lecturers – try to solve real problems of their 
careers, in order to approve their mathematical courses. 

It is important to remark that scene analysis is an excellent source for this kind of problems. 
Moreover, there exists an important set of real-life problems from these areas, which remain 
almost unexplored from the point of view of their mathematical education richness. 

Searching new real-life problems to be used for project-work in Engineering courses, 
represents an interesting challenge for engineers, mathematicians and Mathematical 
Education researchers and, at the same time, it provides a good opportunity for 
interdisciplinary work in research and teaching.  
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This manuscript discusses mixing problems in a first course on differential equations for Chemical Engineering 
students. Mixing problems are easily accessible as they rely on only mass-balance, and they are suitable for a 
first course as they naturally lead to linear systems. This much facilitates technical issues such as existence of 
solutions. On the other hand they form a sufficiently rich class that provides for ample opportunities for 
exploration. In one direction, a typical modelling task involves setting up the systems of equations for different 
geometries in which tanks are interconnected. This paper works an explicit example in detail, and shows how 
one may be led to discovering conservation laws. In the other direction, the paper asks whether any given linear 
system arises from a mixing problem for some geometry of tanks, whether this is uniquely determined, and 
whether this relationship is stable under perturbations. The answers are shown to involve whether certain 
conservation laws are respected, and that due to linearity the scales of the tanks cannot be recovered from the 
equations. The paper continues with the description of related teaching experiments in Chemical Engineering 
and other related careers. The manuscript ends with some general reflections about including this kind of 
examples into service courses. 
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1.  Introduction 

In engineering careers courses, differential equations are widely used to solve 
problems concerned with modelling and so, they may be used to motivate students [1]. 
Problems involving tanks and chemical reactors (mixing problems) provide interesting 
examples [2] and at same time, these problems are easily accessible for second year 
university students, as they rely on only mass-balance. 

In a previous paper [3], modelling and inverse-modelling issues were discussed 
simultaneously for chemical kinetics problems. In this article, all the real-life problems will 
refer  to chemical solutions, mixtures, tanks and reactors (i.e., mixing problems). 

From the educative view point, it is important to note that mixing problems are more suitable 
than chemical kinetics ones for a first ordinary differential equations (O.D.E.) course, as they 
lead to linear systems. On the other hand they form a sufficiently rich class that provides for 
ample opportunities for exploration in Chemical Engineering and other related careers as 
Food Technology Engineering and Environmental Engineering. 
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The discussion in this paper will deal with the important issues such as existence, uniqueness 
and stability for mixtures problems in relation to teaching experiences. Conclusions based on 
the results of the teaching methods used, will be drawn for differential equations courses and 
other mathematical service courses. 

2. A concrete example 

The following mixing problem is considered (figure 1), where a three tank system 
containing water solutions of salt: 

 
 

 
Figure 1. Three tanks system. 

In figure 1,  iΦ   represents flux of salt/water mixture (in litres per second),  iV    is volume (in 
litres) and   iC    is salt concentration in water (in grams per litre or any other mass unit per 
litre). 

As previously shown [2], this problem can be modelled by the following O.D.E. system: 
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Taking into account the following flux’s equations (if all volumes remain constant): 

 

01 2
1
Φ=Φ   

02 2
1
Φ=Φ                  (2) 
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  321 Φ=Φ+Φ      (and then,  30 Φ=Φ  )                    

 

The O.D.E. system can be written as: 
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The sum of all these equations gives the following one: 

 

( )300
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This result is independent of the number of compartments and the geometry of the system. 
Lets suppose a tank system with  n   compartments with volumes  iV   and concentrations iC  
(the internal geometry is unknown). If  0Φ   and  0C   represent flux and concentration at the 
input, fΦ   and fC   are the final ones at the output, then, equation (4) can be generalised to 
get this new one: 

( )∑
=

−Φ=
n

i
f

i
i CC

dt
dCV

1
00           (5) 

The intention is to prove this equation and other features of mixing problems in a subsequent 
paper.  

Engineering students know that each mixture problem has a corresponding mathematical 
model. This model can be written as a linear O.D.E. system and it can be obtained by just 
performing mass balances in all the compartments [2]. In class, several questions are 
frequently posed: 

1. Is the converse true?, i.e., if every linear O.D.E. system corresponds to a particular 
certain mixtures problem, where the geometry and volumes of the tanks (or 
compartments) can be chosen to fit with the given equations. In other words, they are 
asking about existence of  the inverse-modelling problem. 

2. Are these problems about unique? (i.e., if two different problems can led to the same 
O.D.E linear system, for example, as it happens in mechanic and electric oscillations).  

3. What about stability? This question is not asked so often, and depends on previous 
studies of the student. It should be noted that stability is a new concept for several 
students. 

All these issues (existence, uniqueness and stability) will be analysed here, but first let go 
back to the three tanks problem considered above [2]. If the following matrixes are 
introduced: 



 114

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

C
C
C

C   ,  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Φ−ΦΦ
Φ−

Φ−
=

333231

22

11

00
00

VVV
V

V
A      and    

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Φ
Φ

=
0

22

11

V
V

B                   (6) 

 

Then, the mathematical model can be written as 

BACC 0' C+=       (7) 

It is interesting to note that if   ( )321 ,, VVV=V    is the volume’s vector, then: 

( )∑
=

−Φ==
3

1
300'

i

i
i CC

dt
dCVCVT             (8) 

 this is a different form of equation (4), or a particular case of equation (5). 

Multiplying by   TV   the other side of equation (7), other observations can be made. 
Concretely, the following formulas can be obtained straightforward: 

33CΦ−=ACV T       (9)      

 

and      000 CC Φ=BVT        (10) 

Both formulae obviously correspond to the right hand side of equation (8). 

Moreover, it is very easy to show that: 

( )300 Φ−=AVT      (11) 

only depends of the “final” flux and, in the same way,   

0Φ=BVT         (12) 

only depends of the initial flux.  

Similar conclusions may be found using equations (9) and (10). 

Taking into account all these observations, what happens if a slight change in   A  or B  is 
made? 

If  A  is changed (for example, in position (1,1) ) to this new one: 
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Then,   εAV T  will give   ( )31 0 Φ−Vε    which depends of the “final” flux, but also of the 
compartment volume  1V   (note the difference with equation (11)). 
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Similarly, if  B   is changed to  
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also depends on the volume  1V  , which is an important difference with equation (12). 

It is now easily recognised that in both cases, the modified O.D.E. system does not verify the 
general equation (5), so, there is no mixture problem associated to this mathematical model.  
As a consequence of these facts, existence and stability questions for the inverse-modelling 
problem have a negative answer. 

Let’s now consider the effect of a scale factor, i.e., lets multiply volumes  iV   and fluxes iΦ  
by the same number without changing concentrations. For example, in the three tanks 
problem, volumes can be  

 

LVVV 10321 ===  

     fluxes can be:  s
L230 =Φ=Φ   and  s

L121 =Φ=Φ     

and finally,   L
grC 100 =  

  For this problem,  the mathematical model is: 
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Now, if volumes and fluxes are duplicated, i.e.,  

 

LVVV 20321 ===  

s
L430 =Φ=Φ    and  s

L221 =Φ=Φ  

while 0C  remain unchanged  (that means   L
grC 100 =     in this example), then, the 

corresponding mathematical model will be: 
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after a straightforward simplification,  this now becomes, the same as (13). 

So, a scale factor in geometry, not in concentrations, produces exactly the same mathematical 
model, giving a new negative answer, adding, to the question of uniqueness. 

These examples show that existence, uniqueness and stability does not occur, at least for 
these typical mixing problems. Other situations like multiple inputs and/or outputs, 
recirculation, etc., would be excessively difficult for a second year university course, and are 
studied in courses like Reactor’s Design [4] for Chemical Engineering and other related 
careers.  These situations will not be included in this paper. 

3. The educative view point  
Mixing problems are relevant  for students of several careers such as Chemical 

Engineering, Food Technology Engineering and Environmental Engineering. The students 
react more positively to these problems than to others which are not so specific (as circuits or 
mechanics problems). In fact, there are several reasons because they become interested in 
those problems: 

a) specificity (already mentioned) 

b) low pre-requisites (as it was mentioned, they only need to know how to perform mass 
balances) 

c) relevance to other subjects (Physical Chemistry, Reactors Design, etc.)  

Modelling was introduced in UDELAR Differential Equations courses for Chemical 
Engineering and related careers courses in 1996, and since then, tanks and mixtures problems 
have appeared in the final examinations [2]. Inverse problems appeared in the assessment of 
this course two years later, in 1998.  The questions had two different settings: firstly, tank 
dimensions and geometry were given, and students were asked to obtain an input for a 
desired output; and secondly,  both input and output were given and the question was about 
what to put in the middle (i.e., how many tanks, which volumes and fluxes, what connections 
occurred between them, etc.). Finally, inverse-modelling issues were considered specifically 
since year 2005 [3], although inverse-modelling students’ questions, appeared since the 
beginning of all this experience, in 1996.  

In assessment, inverse-modelling was included in two different forms: 

a) Asking the question whether or not a given O.D.E. linear system 
corresponds to a certain mixing problem. In the first experience (in year 
2005), these problems were very simple, because mass balances or fluxes 
equations did not fit, and then, the answer was trivially negative. In those 
problems, students only need to explain this fact. 

b) A more sophisticated inverse-modelling problem, consisting in a group of 
tanks, where the geometry was not given. In this case, students were asked 
to give an accurate geometry to fit with a certain O.D.E. linear system. This 
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kind of problem appeared at the end of year 2005 and the beginning of 
2006. 

As it was mentioned before, all this teaching experience incorporated modelling, problem-
solving and inverse-modelling. All of them were not just discussed in the classes, but  played 
an important part of the assessment. This is a very important issue, for example Smith and 
Wood said that “…appropriate assessment methods are of major importance in encouraging 
students to adopt successful approaches to their learning. Changing teaching without due 
attention to assessment is not sufficient” [5]. 

5.  Results and Conclusions 

Previously, an expert group was consulted about mathematics teaching and learning at 
the undergraduate level, focusing in the specific case of engineering careers [6]. Most 
remarked the importance of teaching significant concepts and procedures in service courses. 
On the other hand, chemistry and engineering students showed an important preference for 
teachers who make the effort of presenting real-life problems, related with their own careers 
[6]. 

When students of Differential Equations were consulted about these courses, there were 
positive reactions, when motivating examples are used to promote mathematical modelling 
and applications. Moreover, they enjoyed working together in project-work, trying to propose 
mathematical models and/or applying the different concepts, tools and techniques to solve 
them analytically or numerically. 

The need for relevance was highlighted by many writers as being important in assisting 
students with learning mathematics. For example, Bajpai et al. [7] suggested a range of 
improvements including a modelling approach and providing more relevant examples. 
According to Wood et al. [8] ‘To make a mathematics course seem relevant to engineering 
students – and hence worth an investment of time – the subject has to be made to seem 
valuable for their own specialisation and future cases’. Finally, Mc Alevey and Sullivan [9], 
asserted that there is a need for using real-life problems since, ‘Students are best motivated by 
exposure to real applications, problems, cases and projects’. 

One aspect that must not be ignored, is the type of assessment must reflect the teaching 
method of the topic. The evaluation process must not be dissociated from the style of 
teaching. So, if courses have been instructed through problem-solving, modelling, etc., then 
assessment must be carried out to reflect this. This purpose can be put into practice through 
project-work, where students – with orientation of an interdisciplinary team of teachers and 
lecturers – try to solve real problems of their careers, in order to approve their mathematical 
courses. 

As it was mentioned by Blum and Niss in their clasic paper about applications, modelling and 
applied problem solving [10], there are six different types of basic approaches to including 
relations to applicational areas in mathematics programmes. In our course, at the beginning 
(1966 to 2000), the “islands approach” was the selected one. In this approach, the 
mathematics programme is divided into several segments, each organized according to a two-
compartment approach: a first part of a usual course in “pure” mathematics whereas the 
second one deals with one or more “applied” items, utilizing mathematics established in the 
firt part or earlier. Gradually, the course changed to a “mixing approach”, where elements of 
applications and modelling are invoked to assist the introduction of mathematical concepts 
and conversely, newly developed mathematical concepts, methods and results are activated 
towards applications and modelling situations whenever possible. 
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Finally, it is important to remark that mixing problems are excellent sources for this purpose. 
Moreover, there exists an important set of real-life problems from these areas, which remain 
almost unexplored from the point of view of their mathematical education richness. 

Searching for new real-life problems to be used for project-work in chemical and food 
technology engineering courses, represents an interesting challenge for engineers, 
mathematicians and mathematical education researchers and, at the same time, it provides a 
good opportunity for interdisciplinary work in both research and teaching.  
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In this study we discuss student assessment and feedback in an Experimental Design course that has been 
taught, over a ten-year period, in several faculties of the University of the Republic and other institutions in 
Uruguay. At the end of each course, students were assessed by means of individual work projects on real life 
problems. Students produced high quality work, some of which was the basis of future papers. Some of the 
student projects were used in later courses as examples to illustrate the use of different techniques and to 
provide teaching material appropriate to the context of the different university specialties. This has allowed a 
process of continuous improvement to occur, which was reflected in students' positive opinions of the course. 
An analysis of these opinions as well as students' suggestions, gathered over a decade, is also presented. 
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1.  Introduction 

Since the early 1990s, we have been consulted in an advisory capacity by teachers and 
researchers at various faculties of the University of the Republic in Uruguay, and by 
industrial companies and laboratories.  

The subject of these consultations gradually changed from Statistics applied to Experimental 
Design, to Process Control and other more specific areas. The increasing need for training in 
Experimental Design led to courses of different contents and durations being taught in the 
following institutions: Chemistry Faculty, Engineering Faculty, Science Faculty, Uruguayan 
Chemical and Pharmaceutical Association (AQFU) and Technological Laboratory of 
Uruguay (LATU), among others.  

The following is a list of the dates and places of the Experimental Design courses to which 
we refer, and the number of students involved: 

 

Year  No. of students Place / Department 

1997            7  Faculty of Chemistry 

1999   6  Faculty of Chemistry 

1999-2000           15  Faculty of Engineering 

2001            10  Faculty of Science / Biology 
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2003            10  AQFU 

2006            22  LATU  

2006                         8     LATU                          

                       Total   78 

Experimental Design is a regular part of the curriculum at the undergraduate level in 
university specialties such as Chemical Engineering, Biology and Agronomy, while in others 
it is a topic dealt with at the postgraduate or continuing education levels. Our courses used a 
blend of the four different approaches discussed by Roiter and Petocz [1] in their article 
building on previous work by Blum and Niss [2].  

From the start, at the Chemistry Faculty in 1997, the final assessment of students taking the 
course has been carried out in a non-traditional way. Students were required to carry out a 
short project on a real-world problem they had a personal interest in. As other authors have 
observed, this is very important for getting students to recognise that mathematical 
knowledge is relevant to their specialty [3, 4]. In addition, if real problems and using 
computers are an integral part of the course, it makes sense to make them part of student 
assessment as well [5]. In fact, efforts to change the contents or teaching methods in a course, 
without adapting student assessment methods accordingly, are incomplete [6].   

This type of assessment has motivated students to produce high quality work, some of which 
has been published in international journals. For instance, two pieces of research work on 
biotechnology were published in the Journal of Data Science [7] and the Journal of Applied 
Quantitative Methods [8], and another on environmental engineering was presented at a 
Congress of the Asociación Interamericana de Ingeniería Sanitaria y Ambiental (AIDIS) [9]. 
The problems selected for the student projects were often developed subsequently in other 
directions. For example, the study presented at the AIDIS Congress [9] was the basis for a 
problem using partial differential equations applied to mass transfer, which gave rise to a 
publication in the New Zealand Journal of Mathematics [10] a few years later. 

Over the years, real-life examples have not only been used in student assessments, but have 
also been introduced into subsequent Experimental Design courses, in a continuous feedback 
process. Many of these examples have proved to have excellent didactic potential when 
explaining and exemplifying techniques customarily used in Experimental Design. In some 
cases it has been possible to use the work projects directly as illustrations, while in others a 
didactical transposition [11] was necessary.  

In this study we shall describe one of these examples, and report the results of course 
evaluations by students, carried out by means of anonymous questionnaires. Finally, we shall 
arrive at some conclusions and recommendations. 

2.  A concrete example of a student work project for course assessment 

For the final assessment after taking a one-semester (42 hours) Experimental Design 
course as part of the coursework for a Master's degree in Biotechnology, one student carried 
out this piece of experimental design work applied to a real life problem posed by his 
practical laboratory project.  

2.1 Study of different final formulations of streptolysin-O 

The aim of the project was to discover a simple, stable and low-cost formulation for a freeze-
dried recombinant protein, streptolysin-O (rSLO) [12], a protein that is useful in diagnostic 
tests for Streptococcus infections. Its antigenicity and haemolytic activity depend on its three-
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dimensional conformation, one of the most labile features of a protein, and finding a 
formulation in which these are preserved during storage is an important task.  

2.2 Experimental design 

Aliquots of rSLO were treated with different preparations, including bovine serum 
albumin (BSA), cysteine, sucrose and glycine at different concentrations, and freeze-dried. A 
full 23 experimental design was used to compare formulations containing BSA, sucrose and 
cysteine [13]. There were 8 possible combinations, together with their duplicates, making a 
total of 16 experimental trials (Table 1). 

A fixed-effects bifactorial design, with replicates, was used to compare formulations 
containing sucrose and glycine at different concentrations [13], with 4 levels for factor A and 
3 levels for factor B, giving 12 combinations. With duplicates, there were therefore a total of 
24 experimental trials (Table 2). 

Table 1. Factors and levels used in the 2k factorial design. 
 

 

 

 

 

 

 

*Factor A: BSA  

 §Factor B: Sucrose 
 ‡Factor C: Cysteine 

 
Table 2. Factors and levels used in the 2- factorial design. 

 
 

 

 

 

 

*Factor  A: Sucrose 
 §Factor B: Glycine    

2.3 Product quality control 

Titre (the reciprocal of the highest effective dilution) of haemolytic activity was used 
to measure of the quality of the rSLO as formulated, because haemolytic activity is an 
excellent indicator of the proper three-dimensional conformation of the protein. The different 
freeze-dried formulations were reconstituted with phosphate buffered saline and stored for 7 
days at 4 ºC, and then haemolytic activity was measured. Statistical analysis of the 
haemolytic activity results was carried out by analysis of variance (ANOVA).  

Levels Factor 

 - + 

A* 0 mg/mL 1 mg/mL

B§ 0 mg/mL 1 mg/mL

C‡ 0% 0.48% 

                          Levels 
  
Factor 1 2 3 4 

A* 0 mg/mL 1 mg/mL 5 mg/mL 10 mg/mL

B§ 0 mg/mL0.1 mg/mL1 mg/mL - 
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2.4   Results of comparisons of different formulations 

Table 3 shows the results of the haemolytic assays for each experimental trial in the 
comparison of BSA, cysteine and sucrose. Table 4 shows the ANOVA table, together with 
statistical and tabulated values of F. 

The preservative effect of the sucrose formulation on rSLO was significant at the 1 % level (p 
= 0.01), while that of cysteine was significant only at the 5% level (p = 0.05). BSA alone did 
not have a significant effect on rSLO preservation; however, BSA in interaction with sucrose 
had a highly significant effect, even more than the interaction of cysteine with sucrose (Table 
4).                                            

Table 5 shows the experimental haemolytic activity results for rSLO in the trials of sucrose 
and glycine at different concentrations. Table 6 shows the ANOVA, and Table 7 shows the 
statistics and critical tabulated values of F.   

This analysis showed that the effect of sucrose in the formulation was significant at the 1% 
level, while glycine did not have a significant effect. However, the interaction between the 
two factors had a preservative effect on the protein which was significant at the 1% level 
(Tables 6 and 7). 

Table 3. Results of haemolytic activity assays. 

 

Experiment 
A 

(BSA)

B 

(sucrose)

C 

(cysteine)
Titre  

1 - - - 200 

2 + - - <200 

3 - + - 400 

4 + + - 1600 

5 - - + 200 

6 + - + <200 

7 - + + <200 

8 + + + 200 

9 - - - 200 

10 + - - <200 

11 - + - 400 

12 + + - 800 

13 - - + 200 

14 + - + <200 

15 - + + <200 

16 + + + 400 
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Table 4.  ANOVA table and values of  F. 

 

  
Sum of 

Squares 
Degrees of 

fredom 
Mean 

Square F* 

A 

B 

C 

122 500 

562 500 

422 500 

1 

1 

1 

122 500 

562 500 

422 500 

2.882 

13.235 §, ‡

9.941 ‡ 

AB 

AC 

BC 

562 500 

62 500 

422 500 

1 

1 

1 

562 500 

62 500 

422 500 

13.235 §, ‡

1.470 

9.941 ‡ 

ABC 62 500 1 62 500 1.470 

Error 340 000 8 42 500  

Total 2 557 500 15   
*Tabulated values of F: F0,95 (1,8) = 5.320    

 F0,99 (1,8) = 11.260                                                                                                                             

§significant at 1% level                                                                                                                    
  ‡ significant at 5% level                                                                                                           

 

Table 5. Results of haemolytic activity  assays of formulations coded as in Table 2. 

 

Treatment
Titre 

(Replicates) Total 

 A1B1 200 - 200 400 

 A1B2 400 - 200 600 

  A1B3 800 - 800 1600 

A2B1 400 - 400 800 

A2B2 1600 - 1600 3200 

A2B3 1600 - 800 2400 

A3B1 800 - 800 1600 

A3B2 200 - 200 400 

A3B3 400 - 400 800 

A4B1 1600 - 3200 4800 

A4B2 400 - 400 800 

A4B3 1600 - 800 2400 
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Table 6. ANOVA table. 

 

Source of 
Variation Sum of Squares

Degrees 
of 

freedom
Mean Square 

A 3 591 666.670 3 1 197 222.220 

B 490 000.000 2 245 000.000   Treatment 

AB 5 843 333.330 6 973 888.889 

Error 1 940 000.000 12 161 666.667 

Total 11 865 000.000 23  

 
Table 7.  Statistics and tabulated values of F. 

 

Null     
hypothesis 

Model I 

factors A 
and B fixed

Critical 
values  of  

F 0.95 

Critical 
values  of 

F 0.99 

A homogeneous 7.405* 3.490 5.950 

B homogeneous 1.515 3.890 6.930 

No interaction 
between A and B 6.024* 3.000 4.820 

*significant at 1% level    
To sum up, most of the formulations studied demonstrated measurable haemolytic activity 
after reconstituting the lyophilised formulations and storing them at 4oC for 7 days, even 
those with nothing added to the rSLO. Formulations of  rSLO with BSA and cysteine did not 
have an additional stabilising effect on the product. The best formulation in terms of 
simplicity and stability was the preparation of rSLO containing sucrose at a concentration of 
10 mg/mL, the highest concentration studied. Other formulations containing sucrose in 
combination with BSA and glycine also produced similar titres of haemolytic activity, but the 
formulation containing only sucrose at 10 mg/mL was preferred as the simplest and most 
economical.    

2.5 Discussion of the value of the work project 

As a learning process, this student’s theoretical knowledge from the experimental 
design course enabled him to structure his experiments to compare different formulations of 
rSLO in a way that was logical and economic in terms of effort and materials; and to analyse 
the experimental results to reach clear and statistically significant conclusions. We believe 
this kind of process not only demonstrates students’ ability to apply experimental design 
knowledge, which is useful for course assessment, but also reinforces it, gives students real-
world experience of using it, shows them its relevance as a research tool, and increases their 
confidence to apply it in future. 
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3.  Results of course evaluation by students' opinion surveys 

Students were asked to evaluate the course, in order to continually improve it. At the 
end of each course a written questionnaire was issued to students to be filled in anonymously. 
These questionnaires covered a range of specific items on how the course had been 
conducted, and perceptions of teacher effectiveness, using structured questions that could be 
analysed quantitatively. There were also a number of semi-open questions, where students 
could freely express their opinions and contribute suggestions, criticisms, etc. The course 
evaluation presented here was for a course taken by Biology students, and is representative of 
the evaluations carried out for the different courses over a decade.   

3.1 Results of course evaluation: structured questions 

Table 8 shows the items covered by structured questions about how the course was 
conducted, and the pooled results of students' responses, as percentages of total responses. 
Table 9 shows the aspects of teacher effectiveness enquired into, and the pooled results of 
students’ responses, as percentages of total responses.  

Table 8.  Results of course evaluation: How the course was conducted. 

  

Aspect of the 
course to be 
evaluated 

Bad    

 

(%) 

Neither 
Good 

not Bad 
(%) 

Good  

(%) 

Very 
Good  

 

(%) 

Selection of 
topics covered 

_ 

 

_ 83.3 16.7 

Quality of the 
methodology 

_ 

 

_ 

 

66.6 33.4 

Time assigned to 
each topic 

_ 

 

33.2 66.8 _ 

Clarity of the 
initial objectives 

_ 

 

_ 

 

50 50 

 

Course 
dynamics (group 
work) 

_ 16.6 66.8 16.6 

Course material 
supplied 

_ 

 

_ 

 

83.4 16.6 

General 
appreciation of 
the course 

_ 

 

_ 

 

33.3 66.7 
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Table 9. Results for perceptions of teacher effectiveness. 

 

Perceptions of 
teacher 

effectiveness 

Bad  

(%) 

Neither 
Good 

not Bad 
(%) 

Good 

(%) 

Very 
Good 
(%) 

Competence in 
theoretical 
knowledge 

_ 

 

_ 22.2 77.8 

Skill and clarity of 
explanations 

_ 

 

 

12.5 25 62.5 

Ability to motivate 
and interest 
students 

_ _ 50 50 

Interest in 
clarifying students' 
problems 

_ _ 50 50 

 

Ability to 
communicate 
theoretical 
information 

_ 12.5 62.5 25 

 

Management of the 
class 

_ 12.5 37.5 50 

 

 

3.2 Results for overall evaluation of the course and open-ended questions 

When students were asked to evaluate the course overall, in terms of whether the 
topics covered had satisfied their expectations of the course, 66.6 percent replied "Yes", and 
33.3 percent replied "Partly". No students answered "No" to this question. 

In the open-ended questions the results showed that, in the case of these Biology students, the 
topics they would have liked to see covered in more depth were: experimental design more 
closely applied to biological examples; more examples of the application of non-parametric 
statistical tests; optimisation of experiments; applications of variable selection; and goodness-
of-fit and analysis of variance for simple linear models. The students also said that they 
would prefer to spend more time on practical work and in the computer laboratory, and these 
were the greatest overall needs identified by the students on the courses given. They proposed 
expanding the courses, with more theoretical and practical hours per course; and they 
suggested having practical classes in parallel with theory classes throughout the course, so 
that they could apply their new theoretical knowledge immediately to practical problems.   
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3.3 Discussion of students’ evaluation of the course 

The results of the student evaluation showed an acceptable level of general 
satisfaction with the course, its contents, teacher effectiveness, and most other items asked 
about in the questionnaire. However, the need for a greater connexion between Experimental 
Design and biological topics was stressed. This was reflected in two parts of the 
questionnaire: the open-ended part, where more examples applied to biological fields were 
explicitly requested, and the part asking about time allocated to different activities, where 
several students mentioned the need for more hours of practical work and computer 
laboratory access to deal with these examples.  

4. Conclusions and Recommendations     

It should be noted that the example worked through in Section 2 was a work project 
carried out after the first course for biology students, and in later courses it served as a source 
of example problems that aroused the interest of this group of students. In fact, in evaluations 
of more recent courses, taught in 2006 and 2007, students' perceptions improved with respect 
to applicability to their main subject, time allocated to practical work, use of appropriate 
software, and other points. 

We found the following to be good practices for increasing both students' and teachers' 
learning and satisfaction: a dynamic feedback cycle of course improvement and 
methodological changes, using materials based on students' own work projects; the linking of 
student assessment to solving real-world problems; careful attention to students' opinions 
through regular evaluations; and ensuring closer application of examples to students' specific 
specialties.  

These have been part of a process of continuous improvement of Experimental Design 
courses, which began 10 years ago and is still continuing.  
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This paper offers a diagnostic report on learning difficulties of 37 engineering mathematics students from two 
Further Education and Training (FET) Colleges in South Africa as they solve problems involving volumes of 
solids of revolutions. The instrument used in this research consisted of 23 questions classified in five categories. 
The data collected revealed that the students were not competent in drawing graphs and diagrams (in 2D and 
3D). Students were seen to do well in problems that were procedural in nature or that had been seen before in 
their textbook or in examinations, even if those problems were regarded as more difficult than problems that 
were conceptual in nature. In general, students were better equipped to translate from visual to algebraic 
representations than from algebraic to visual. The study revealed that students lack the visual skills to interpret 
graphs and diagrams appropriately and were also unable to interpret some problems that were formulated in 
words. 

Keywords: Solids of revolution, translations, algebraic and visual representations, 2D and 3D diagrams, 
procedural and conceptual learning, algebraic skills, cognitive skills. 

AMS Subject Classification: 97D40  

1. Introduction and background  

The aim of this study is to investigate what written and verbal interpretations are 
produced by engineering mathematics students at two Further Education and Training (FET) 
Colleges in South Africa after learning the topic of Volumes of Solids of Revolutions 
(VSOR) in integration, which constitutes between 20-40% of their syllabus.  

Traditionally, students have difficulties with this section. When rotating a given area bounded 
by graphs about the X- or the Y-axis, students seem to find it difficult to distinguish between 
the disc method; the ring/washer method or the cylindrical shell method. Students are 
expected to translate from a graphical representation (drawing) to an algebraic representation 
(formula) in order to come up with a numerical answer (calculation). This study is diagnostic 
and identifies aspects that influence students’ learning of VSOR with reference to graphing 
skills; how they translate between visual and algebraic representations (in 2D and 3D); how 
they translate between two and three dimensions using diagrams and also verbally; how they 
translate between discrete and continuous situations (in 2D and 3D) and how they solve 
problems requiring algebraic skills and those that require more general cognitive abilities.       
 

                                                 
* Corresponding author. Email: batsebam@uj.ac.za 
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2. Literature review, research questions and the theoretical framework. 

In learning mathematics and symbols students deal with graphs and equations and 
interpret mathematical language. According to Dreyfus [3: 32], “to be successful in 
mathematics, it is desirable to have rich mental representations of a concept”, which enables 
students to interpret the external representation (diagrams) appropriately from their internal 
representations (mental images). The mental images that students construct cause them to 
succeed or fail. In solving mathematical problems, Dreyfus [4] believes that students avoid 
using diagrams and diagrammatic reasoning because of the cognitive obstacles related to 
diagrams.  

Thornton [13] argues that visual thinking should be an integral part of students’ learning 
process as it plays an important role in the development of algebraic learning (a very 
important aspect to be explored in this study). According to Thornton, “powerful algebraic 
thinking arises when students attach meaning to variables and visualize the relationship in a 
number of different ways” [13:252]. The purpose of this study is to investigate these 
relationships, with the main focus on the development of algebraic thinking as students 
translate the visual (rotation of graphs after selection of an appropriate strip) to the algebraic 
representations (of equations) in order to compute the volume using integration and vice 
versa.  

Other studies on translation from visual to algebraic representations and vice versa were 
conducted by Knuth [8] and Santos [11]. The studies revealed that many students were able 
to connect between the algebraic and the graphical representations of functions when dealing 
with familiar routine tasks, where a table of values is used to satisfy a given equation. The 
students in Santos’s study were more successful working in different levels of representation 
more than those in Knuth’s study, possibly because they used a dynamic software package, 
Cabre Geometre to help them visualise the graphical relationships.  

Mofolo [9] conducted a study at one FET College which led to a report on The interplay 
between the visual and the algebraic abilities of students. Students were assessed in writing 
after visual and verbal instruction using a Mathematica demonstration by Kim and Ryan [8], 
which was in the form of animations and graphics covering the topic of VSOR in detail. The 
study revealed that the majority of students were unable to translate from the visual 
(graphical representation) to the algebraic representation so as to compute the volume 
generated [9].  

In learning of VSOR one wants to investigate whether failure to translate from visual to 
algebraic is as a result of inability of students to relate to the graphs they have drawn (if any), 
or is it because VSOR is just too difficult a topic for them. Is it maybe too high in terms of 
their cognitive abilities and preparedness? If a new concept that is to be learned is cognitively 
high for the students’ internal representation, it is argued that students normally fail to make 
sense of it or even understand it conceptually [12]. In their report on students’ conceptions, 
Petocz et al [10] revealed that internationally, students regard maths as being ‘abstract’. 
Learning concepts that are above the students’ cognitive level is often regarded as abstract 
but sometimes possible if the students are given enough time to deal with such concepts. 
Unfortunately, that is not always possible with the FET College students due to the fast pace 
and volume of work. Eisenberg [5] argues that the abstraction of the new mathematical 
knowledge and the pace with which it is presented often becomes the downfall of many 
students.  

In teaching and learning of VSOR, students are expected to use procedural knowledge as well 
as conceptual knowledge, which normally complement one another. Engelbrecht, Harding 
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and Potgieter [6] pointed out that along the process of learning, the conceptual knowledge 
that is repeatedly presented might end up being procedural knowledge, in that students might 
not be thinking about what they are doing when presented with repeated problems, since the 
problems might have been done many times in class. In learning of VSOR the visualisation of 
the graphical representation and the translation to an algebraic representation can be regarded 
as conceptual learning since it involves analysis and critical thinking to enable the student to 
use a particular method. For the given different graphs in most cases, the areas bounded may 
be different; hence one cannot procedurally proceed, conceptual thinking is necessary. 
Students must engage with the graph, analyse what area needs to be rotated, what boundaries 
are given and how it must be rotated. The substitution to the algebraic (formula) and 
calculating the volume generated can be regarded as being procedural since is involves 
applications of rules and algorithms. 

From the studies discussed above and our experience in learning and teaching of VSOR, the 
following research question was established: Why do students have difficulties to understand 
when learning about Volumes of Solids of Revolutions? 
The way in which the students construct knowledge, interpret and make sense of what they 
have learned will be located within Bernstein’s [1] rules of knowledge acquisition as our 
theoretical framework. Since one is dealing with students’ difficulties, it is necessary to study 
students’ thinking processes and how that impacts on their ways of learning.  Using students’ 
written and verbal interpretations, one can investigate their ways of thinking. In the process 
of learning, knowledge acquisition occurs when students are able to recognise or realise, that 
is, being able to interpret the question and to give the correct answer. Bernstein [1] refers to 
that process as involving the recognition and the realisation rules. He refers to the recognition 
rules as the means by ‘which individuals are able to recognise the speciality of the context 
that they are in’ during a learning process, while the realisation rules allow the production of 
the ‘legitimate text’ as in giving the correct answer. During the learning process the 
recognition rules enable the necessary realisations, while the realisation rule determine how 
meaning is being put together and made public [1]. In terms of this study the recognition and 
the realisation rules are related to the students’ ability to link their internal representations 
(mental image) properly with the external representation (visualising and interpreting the 
graphs correctly) in VSOR. The ability to recognise and realise, using procedural knowledge 
flexibly may be influenced by the way in which instruction occurred (knowledge 
transmission) or what the students believe mathematical knowledge to be. 

3. The participants and instrument used 

The participants in this study were students from two FET colleges (aged 19 to 25 
years), one from a township and one in the city in the Gauteng province enrolled for the 
National Certificate in Engineering (N6), in their second year after secondary school. The 
sampling was purposive [2] whereby students selected were from the local colleges 
accessible to the researchers. All the students participated voluntarily. The results presented 
in this study are only for 37 students (of 52 students) who participated fully in this study by 
completing all sections of the measuring instrument. 

Data was collected over the period of one week during the first trimester of 2007 using an 
instrument consisting of 23 questions grouped into five different categories. To avoid 
repetition, examples of questions will only be included in the next section 

Category 1: Graphing skills and translation between visual and algebraic. Questions require 
students to translate a given equation into a graph or to translate a given diagram into an 
algebraic equation, both in two and three dimensions. 
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Category 2: Translation between 2D and 3D. Questions require students to translate from two 
dimensional to a three dimensional diagrams or to translate from three to two dimensions, 
verbally and visually. 

Category 3: Translation between continuous and discrete. Questions require students to draw 
rectangles to approximate the area under a curve or to draw the rotated strip in the cross-
section of the generated solid representing a disc, shell or washer. 

 Category 4: General algebraic skills. In this category, students are expected to evaluate a 
given definite integral.  

Category 5: General cognitive skills. In this category, students are expected to finish a full 
problem by drawing the graph, indicating the representative strip that they would use and to 
calculate the volume. 

All questions were verified by an expert to ensure that proper standards are maintained 
throughout. The questions were randomised before given to the students to ensure that the 
categories used were not grouped. The students responded to them either individually or in 
groups, so as to gather individual and group responses. The students’ successes or failures 
were validated by their written responses. All the responses were marked, analysed and 
summarised, and discussed with an expert to validate the analysis and the interpretations. The 
marked responses were then reorganised in the proper categories for further analysis. Since 
the questions given to the students focused on the problematic section of their syllabus, we 
assumed that the students would be serious in doing the questions. For ethical considerations, 
students completed consent forms for willingness to participate and also for ensuring that the 
results will be treated with confidentiality without their names being revealed [2].  

4. Findings 

In establishing the results, students’ written work was marked and analysed. Each 
question was rated as either fully correct, almost correct, traces of understanding, no 
understanding or not done. The results were statistically analysed but for the investigative 
purpose of this current report, only a descriptive evaluation of student performance in each of 
the five categories is given rather than a complete statistical analysis of the results.  

Category 1 (Graphical skills, translation between visual and algebraic) 

In this category there were 10 questions on graphing skills and translating between visual and 
algebraic representations, in both directions.  We give three examples: 

Example 1 (graphical skills): Draw a line with positive gradient passing through the origin for 
]3;0[∈x  

Example 2 (algebraic to visual): Draw the 3D-solid of which the volume is given by  

                                                     ∫ −
1

0

2)1( dxxπ  and show the representative strip. 

Example 3 (visual to algebraic):  The figure below represents the first quadrant area bounded 
by the graphs of 522 =+ yx  and 2=xy . Using the selected strip, substitute the equations of 
the given graphs in a suitable formula to represent the volume generated if the selected area is 
rotated about the x-axis. Do not calculate the volume. 
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The questions on graphical skills produced some interesting and surprising results.  The 
question in Example 1 seemed simpler than another question that required the sketch of a 
hyperbola 922 =− yx , yet most of the students could draw the hyperbola while few could 
draw the straight line. Most students drew vertical or horizontal lines ending at 3 or lines 

3=y  or 3=x  and other totally different graphs. This reveals that they have difficulty in 
interpreting a verbal description such as “a line with a positive gradient” and they do not 
know what [0,3]x∈  means. 

Student responses on questions (such as in Example 2) in which they should move from an 
algebraic to a visual representation varied. Most of those who gave meaningful responses 
drew graphs but not in three dimensions. The students were unable to relate the given 
equations for volumes to graphs that would represent a disc and a cylindrical shell. In two 
dimensions the results were somewhat better. 

When required to move from a visual to an algebraic representation (such as in Example 3) 
the majority of responses were correct. Students clearly have fewer problems translating from 
visual to algebraic than vice versa, both in two and in three dimensions. 

Category 2 (Translation between 2D and 3D)  

In this category there were 4 questions in both directions.  We give one example: 

 

Example 4: Draw a 3-dimensional solid that will be generated if you rotate the circle  

Given below about the y-axis. 

 
 

Very few students managed to draw a torus. Students were seen to draw cylinders and other 
nonsensical diagrams. In this category translation from 2D to 3D and from 3D to 2D was 
considered as only partially successful and only for simple diagrams such as a straight line 
that gave rise to a cone and a semi-circle that gave rise to half a sphere. If diagrams involved 
more imaginative skills at a higher level of conceptualising  (such as in Example 4) most 
students failed. The performance in this category was surprisingly and disappointingly low.  

Category 3 (Translation between continuous and discrete)  

In this category there were 4 questions in both directions.  We give one example: 
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Example 5: In the sketch below, show in terms of rectangles what the following represents 

  
   )4(2)2(2)0(2 fff ++  

  
The performance in this category was disappointing. Students could not interpret the 
expression )4(2)2(2)0(2 fff ++  visually, and could not relate it to the given function. 
Students would approximate the given area (as in Example 5), or volume for other questions, 
by disjoint rectangles or slices, not showing any continuity of points on a continuous 
function. From the responses given, it was clear that students were not familiar with the 
concept of a Riemann sum. In short, students were certainly not proficient in moving from 
continuous to discrete representations and from discrete to continuous representations in 2D 
and in 3D.   

Category 4 (General algebraic skills) 

In this category there were 3 questions on algebraic skills.  We give two examples: 

 

Example 6: Find the point of intersection of  2 24 9 36x y+ =  and 2 3 6x y+ = . 

Example 7: Evaluate dxxx )sin
1

0
1(2∫ −π , 

Students showed some competencies in algebraic skills even though there were substantial 
mathematical errors. Such errors for Example 6 are that some students responded by finding 
the x- and the y-intercepts for each equation, some equated graphs in an incorrect way while 
others took square roots incorrectly: 236 4 6 2x x− = − . For questions such as in Example 7, 
although some students made mathematical errors by multiplying xx sin  to be 2sin x  or 
even x2sin , most students were able to solve the integral even if they were making errors with 
the signs. It can be argued that students were reasonably successful in this category, despite 
the mathematical errors made. 

Category 5 (General cognitive skills) 

In this category there were 2 questions on general cognitive skills. We wanted to test whether 
students can do an entire problem correctly, in this way combining the individual skills tested 
in categories 1-4. We give one example. 

Example 8:  Given: xy sin=  and 1=y , where ⎥⎦
⎤

⎢⎣
⎡∈

2
;0 πx . 

                   (i)  Sketch the graphs and shade the area bounded by the graphs and x = 0. 

2

f 

6 4
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                   (ii)  Show the rotated area about the y-axis and the representative strip to be used  

                          to calculate the volume generated. 

                   (iii) Calculate the volume generated when this area is rotated about the y-axis. 

   

The performance for this question was below expectation, with very few students producing 
correct responses. Summarising: 

Some students did everything correctly, arrived at the correct formula but could not do the  

integration.   

Others drew correct graphs, shaded correctly, drew a disc, but used formulas for  

the disc- and shell-method simultaneously:  ∫ −
1

0

21 )(sin2 dyyyπ  

Some drew the correct graphs, shaded correctly, drew a y∆ -strip and used an incorrect 

formula such as   
1

sin
0

x xdxπ ∫  and other students drew a sine graph with a y∆ -strip then 

used the formula ( )∫ −
2

0

2 1sin

π

π dxx . 

The different interpretations given for this question reveal how confused the students were, 
and how failure in one facet of the problem can make them fail in the rest of the problem. The 
majority of the students lacked the broader cognitive skills for questions in this category.  

In general the responses given by individual students and students who were working in 
groups were not significantly different. When discussing with students as they were solving 
problems, it appeared that most students had problems understanding what a 3D-diagram 
means. Many students also believe that when asked to rotate about the y–axis one must use a 

y∆ -strip and when rotating about the x-axis one must use a x∆ -strip. This conception 
justifies why most of the students use the disc method in many cases. If one rotates a x∆ -
strip about the x-axis one will always get a disc or a washer and the same applies if a y∆ -
strip is rotated about the y-axis.  

5. Discussion of the findings  

From the results reported in the previous section, our earlier inkling that most students 
are struggling with this section is confirmed. The general performance in the entire 
instrument was poor; students clearly find this section hard to comprehend. In this diagnostic 
study five different categories were identified to establish where exactly things go wrong and 
to find out about was learned and how it was learned.   

Evidence from this experiment seems to indicate that students found it slightly easier to 
translate from visual representations to an algebraic representation than the other way round. 
Even so, there were students who found it difficult to interpret a diagram or a graph, they 
lacked the rich mental representations of a concept [3] hence they failed to interpret diagrams 
appropriately. In cases where students managed, it was evident that it happened in cases 
where the conceptual knowledge (in form of diagrams or equations) had repeatedly been 
presented to them, hence ending up being procedural knowledge [6].  
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Students found moving between two and three dimensions problematic. In some instances, 
when asked to draw a diagram in 3D, students would draw a 2D-graph exposing ignorance of 
what is meant by two or three-dimensional situations. For this particular topic, this 
misconception must be considered as one of the most serious gaps in their mathematical 
knowledge. 

Students performed fairly well in the category on general algebraic skills. This confirms our 
suspicion that students prefer procedural mathematics to conceptual thinking. It seems as if 
students might find conceptual thinking difficult. When presented with repeated problems, 
however, they would be reproducing what was learned before and seem to succeed mostly. 
Referring to Bernstein’s recognition and realisation rules [1], it seems that most students have 
some recognition rules but do not apply them meaningfully, hence they fail to realise. 
Students seem to display some competencies wrongly when the context does not require 
these competencies and fail when the context does requires them. In Bernstein’s terms, one 
can say that most students were unable to recognise the context they were in, hence failed to 
realise (giving the correct response).  

6. Conclusions and recommendations 

Our general feeling after this diagnostic investigation is that although students 
perform better in some of the categories, their poor overall performance indicates that this 
section of the syllabus is perhaps cognitively more demanding than many other topics. 
Students’ approach is to rely on types of problems that they have been exposed to before, so 
they fail if the problems in exams differ from what they have seen before. 

In presenting the topic, the study indicates that more emphasis should be on visual learning 
and the conceptual development of the formulae involved (disc/ring/shell). We recommend 
that this section should be taught more conceptually, where students focus on how the 
formulae are derived from the diagrams rather than only calculating areas or volumes. 
Students should be more exposed to translating between visual and algebraic representations. 
Attention should be given to conceptual understanding of graphical representation. Attention 
should also be given to moving between two and three dimensions and between continuous 
and discrete situations to make them conceptually more capable and to learn in depth, not just 
procedurally. It is recommended that attention be given to visualizing, and here software 
packages that can animate graphical representations by rotating diagrams to move between a 
plan view and a 3D view. 

Learning procedures without reasoning is meaningless, as the procedures cannot be used 
when the context of the problem changes. Further research should be done as to how teaching 
could be improved so as to enable meaningful learning and better understanding. 
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Using Maple to investigate the solution of partial 
differential equations 
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Abstract 

 

Many one-dimensional physical processes are easy for students to visualise, though two-
dimensional cases present problems.  The difficulty seems to be in the understanding of how 
each of the different parameters influences the phenomenon.  Maple, via animation options, 
creates the opportunity to examine the total picture of various physical phenomena and 
thereby analysis of the influence of different parameters on evolution of physical process.  
This paper will demonstrate how an image of the numerical solution for partial differential 
equations can be created by the Maple code.  This approach may be helpful for students 
studying courses concerning numerical methods. 
 

Keywords: Partial differential equations, visualization of PDE's solution, Maple code. 
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Abstract 

 

The development of computer technology has affected university education along with other 
changes in the past few years.  The difficulty of accommodating and retaining new students 
(tutorship system has helped this in both public and private universities) combined with lack 
of mathematical skills greatly hinder the teaching and learning of mathematics at this level.  

Some notable differences between the average level of mathematics education and above, 
with reference to the purposes, objectives, methods and approaches to teaching lead to many 
problems.  The mathematics teachers of the Universidad Tecnológica Nacional Facultad 
Regional Buenos Aires, in particular those teaching discrete mathematics, face a double 
challenge with students whose average level of preparation, knowledge and attitudes still are 
questionable as university students and other topics must have the level and quality of study 
in each subject deserves.  

The dropout rate is a constant disappointment that impacts not only on the educational 
mission of the department but on the university institution. To attempt to rectify this situation, 
it is necessary to provide innovative teaching where the educators assist the growth of 
cognitive strategies to motivate students to become main players rather than spectators in 
their mathematical development. 

The curricular activities of the course will encourage the potential of each student with the 
use of new technologies (computers) and traditional methods (tutor system) taking into 
account the individuality of each student. This research will show that respect of the 
individuality of each student and the uses of alternative methodologies, such as computer 
technologies, small integrated pieces of work, will assist in the development of how to 
surmise, build and design.   

 

Keywords: university, permanency, tutor, teaching, mathematics, learning 
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Maple Presentation 
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Workshop abstract 

 

Maple can help students visualize many results and, in many cases, reduce the difficulties of 
lengthy and tedious calculations so that students can concentrate on the solutions to their 
problems rather than the mechanics of how they obtained the solution. 

 

I would like to present four topics:- 

 

(1)  The use and representation of characteristics in solving PDE’s and the regions of 
attainable solutions. Students find these ideas very hard to visualize. 

 

(2) Interesting Input-Output problems where different types of periodic, non-periodic or 
discontinuous input can produce surprising output.  

Most students only consider the usual inputs of sinusoidal, exponential or polynomial – this 
demonstration examines other important types of input. 

 

(3) The use of z transforms to solve difference equations. Here we will look at the types of 
solutions and show their connection to the Laplace transform. 

These important ideas are poorly understood by many students. 

 

(4) Problems in optimal control and switching curves. 

Students have great difficulty envisaging these types of problems and Maple can help greatly 
with their understanding. 
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Cellular Automata on a spreadsheet 
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Abstract 

 

Mathematicians have always dealt with objects, relationships between those objects, rules 
governing change and finally numbers.  Theorems, Lemmas and models have traditionally 
been worked out with pen and paper. 

 

Many structures are too complicated for people to do using traditional methods, however 
computers are ideally suited for some of these tasks.  Our group of mathematics educators 
believes that 'doing maths' should include such structures, and we actively welcome 
technological tools which help is to do so. This view of Mathematics encourages students to 
use modern technology to tackle interesting tasks. In doing so, they also gain valuable skills 
which enhance their employability. 

 

One particular example of this approach is that of Cellular Automata implemented on a 
spreadsheet.  This paper describes how Applied Mathematics students in the second and final 
years at Sheffield Hallam University have been modelling such things as drug absorption, and 
game theory using CA and Microsoft Excel.  
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Didactic analysis of a probability problem 

R. SAINZ, M.P. DIESER*, A.E. HERNÁNDEZ, M.B. LATTANZI and E. VICENS 
DE LEÓN 

Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa Av. 
Uruguay 151, Santa Rosa, La Pampa, Argentina. 

Solutions of a probability problem are analysed from the anthropological approach by Ives Chevallard of 
Didactics of Mathematics elements: the notions of task, technique, technology and theory. The analysed 
solutions include personal strategies, the construction of a tree of probabilities, the application of elementary 
probability results, a simulation process and the employment of a Markov chain with two possible states. 
Didactic analysis of the problem considered in this report can be useful for the training of mathematics teachers 
at university level. Moreover, it may contribute for students to integrate concepts and procedures studied 
through different subjects. 

Keywords: Probability; Didactic analysis; Problem solving  AMS Subject Classification: 97C30; 97C70   

1. Introduction 

Problem solving is a usual practise in Probability courses. From the point of view of 
Didactics of Mathematics this activity can be analysed from diverse perspectives. In this 
report some concepts that come from the anthropological approach by Ives Chevallard 
elements are employed: the notions of task, technique, technology and theory. In this 
approach, the institutions play an important role in the study of the didactic phenomenon [1–
2].  

Any activity consists in the realization of a task or a tasks system. For a person, a task is 
routine if he/she knows a way to do it, i.e. if he/she has an appropriate technique. Otherwise it 
is a problematic task. A problematic task could become in a routine with the acquisition of an 
appropriate technique. The employment of a technique can require to carry out sub–tasks, 
with theirs respective sub–techniques. Systems of institutional tasks exist in each institution 
(a culture, a family, a class, a teaching level, etc.), which are carried out from institutional 
techniques. These are legitimated within that institution. 

The reasoning that allows to understand and justify a technique is called technology. One of 
the institutional activities consists in building and specifying the technologies corresponding 
to techniques employed in that institution. A technique which is accepted as valid in an 
institution may be invalid in another. 

The reasoning that bases the technology is named theory. In certain institutions it can simply 
consist in the reference to another institution whose authority endorses it. 

In this report it is shown how these concepts are applied to an analysis of a probability 
problem solution. It is part of a project that includes the analysis of other problems and their 
solutions. They are going to be proposed to a small group of future mathematics teachers. 
This problem, and its didactic analysis realized under a different approach, appears in [3]. 
This analysis scheme was used in [7] to analyse a combinatory problem. 

The basic results about Probability Theory can be found, for example in [4] or [6]. 
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2. The Problem 

Let us consider the following problem:   

Twenty seven explorers are lost in a cave where three roads begin. One road leads to the 
exterior in one hour. The other two roads do not have exit: if the explorers enter for one of 
them, they return to the cave in two days; if they enter for the other one, return to the cave in 
three days. As the explorers do not take any light and the cave is dark and has many 
obstacles, they choose, every time that they make a trial to leave, one of the three roads at 
random. Let us suppose that: 

(A) Each explorer has provisions to survive at most six days.  

(B) The provisions are available without limit of time. 

For each one of the previous assumptions: 

1. Find the probability that an explorer comes out from the cave.    

2. Find the expected number of explorers that reach the exterior.   

The statement contains two parts. The first one describes a possible situation in the real 
world. The second one is directed to the reader, and it proposes him/her a group of tasks and 
the conditions to carry out them. 

The employed techniques to performer the assigned tasks will depend on each individual 
and/or institutional knowledge that a person could have and on his/her ability to use them in 
this problem.  

3. The problem solution procedures under the assumption (A)  

The statement assigns two tasks to the reader. Also, it points out the basic condition to carry 
out the tasks: it is supposed that a road in each trial to leave the cave is randomly selected. 

The first task consists in determining the probability that an explorer comes out from the 
cave. To determine this probability, three sub–tasks are carried out: 

Sub–task 1: determine the possible paths that an explorer can select from the cave. 

Sub–task 2: find the probability that an explorer comes out from the cave using each one of 
that paths. 

Sub–task 3: determine the probability that an explorer comes out from the cave. 

The second task consists in determining the expected number of explorers which come out 
from the cave. 

 

 
Figure 1. Graphic used to visualize the situation. 
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Figure 1 shows a graphic strategy which can be used to visualize the situation. Each road is 
selected at random, therefore the probability that an explorer chooses one of the three roads is 
equal to 1/3. The roads that an explorer can select from the cave are denoted by: c1, road 
which leads to the exterior in one hour; c2, road which returns to the cave in two days and c3, 
road which returns to the cave in three days. Next, four possible solution ways are shown. 

3.1. Solution 1 

3.1.1: First task: determine the probability that an explorer comes out from the cave. To 
carry out the first sub–task, the possible paths are represented using a tree diagram like it is 
shown in the Figure 2, considering that an explorer comes out from the cave in certain 
moment or he/she dies for lack of provisions.  

 
Figure 2. Tree diagram that represents the possible paths. 

Looking at this picture, clearly arise that the paths are not equally likely, therefore the 
probability that an explorer leaves the cave cannot be calculated using the Laplace´s rule. 
Then, the paths that lead to the exterior of the cave are the only considered. Next, each one of 
these paths is enumerated indicating the succession of selected roads as follows, T1: c1;  T2: 
c2 c1;  T3: c2 c2 c1;  T4: c2 c3 c1;  T5: c3 c1  and  T6:  c3 c2 c1. 

The second sub–task consists in determining the probability that an explorer uses the path iT  
to come out from the cave, for each { }1,2,3, 4,5,6i∈ . Given the presence of obstacles and 
darkness inside the cave, the choice of one of the three possible roads in each trial is 
independent of the other choices. Therefore ( )1 1/ 3P T = , ( ) ( )2

2 1/ 3P T = , ( ) ( )3
3 1/ 3P T = , 

( ) ( )3
4 1/ 3P T = , ( ) ( )2

5 1/ 3P T =  and ( ) ( )3
6 1/ 3P T = , where ( )P X  denotes the probability of  

an event X. 

Each path represents an excluding way of leaving the cave with regard to the rest of the paths. 
So, the third sub–task, to determine the probability that an explorer comes out from the cave, 
consists in adding the probabilities that an explorer achieves it using the path Ti, for each 

{ }1,2,3, 4,5,6i∈ . Then ( ) ( ) ( ) ( ) ( )1 2 3 4 5P T P T P T P T P T+ + + + +  ( )6 18 / 27P T = . 

3.1.2. Second task: determining the expected number of explorers which come out from 
the cave. The probability that an explorer comes out from the cave is 27/18 , therefore it is 
expected that 1827/1827 =×  explorers come out from the cave.  

The employed technique in the first sub–task is the construction of a tree diagram. The 
technology that supports the technique comes from the field of the combinatorial analysis. 
The employed techniques in the second and third sub–tasks belong to the field of Probability. 
The technologies that justify the techniques are the mutually exclusive events probability 
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properties and the independent events probability properties, which belong to Probability 
Theory.  

The corresponding technology to the technique used in the second task is based on the 
concept of direct proportion. The theory that justifies it is the theory of proportions. 

3.2. Solution 2 

3.2.1 First task: determine the probability that an explorer comes out from the cave. 
The quantity of hours used in the process is kept in mind to determine the possible paths. If 
an explorer chooses the road c1 he/she arrives to the exterior in one hour, if he/she selects the 
road c2 returns to the cave in 48 hours, and it takes 72 hours in returning to the cave if he/she 
chooses the road c3. Each explorer has provisions to survive at most six days, so the time 
used to come out from the cave should be at most 144 hours. An explorer can go through the 
road c3 at most two times because 272/144 =hh . An explorer can not go through the road c2 
more than three times because 348/144 =hh . He/she can go one time through each one of the 
roads c2 and c3, since ( ) hhhh 244872144 =+− , this is not enough time to go by some of  the 
other two roads once again. Therefore, the possibilities of survival are the following: 
72 1 73h h h+ =  (c3 c1); 72 48 1 121h h h h+ + =  (c3 c2 c1, or c2 c3 c1); 48 48h h+ +  
1 97h h=  (c2 c2 c1); 48 1 49h h h+ =  (c2 c1) and 1h  (c1). 

The remaining sub–tasks and task are equal to those in the points 3.1.1 and 3.1.2.   

In this case, a specific personal technique has been used for this sub–task, where the 
technology consists in the enumeration of the survival possibilities keeping in mind the time 
used in each case. 

3.3. Solution 3 

3.3.1 First task: determine the probability that an explorer comes out from the cave. Let 
us consider the events kiC , : An explorer chooses the ith road in the kth trial, where 

{ }3,2,1∈, ki . Because of the cave physical conditions the choice of a road is random, so 
( ) 3/1, =kiCP , for { }3,2,1∈, ki . The event of interest is S: An explorer comes out from the 

cave in at most six days. The possible paths which an explorer can choose to reach the 
exterior of the cave in at most six days are denoted as follows: 1,11 CS = , 2,11,22 CCS I= , 

2,11,33 CCS I= , 3,12,21,24 CCCS II= , 3,12,31,25 CCCS II=  and 3,12,21,36 CCCS II= . The 

independence property in the road choice is used to find ( )jP S , { }1, 2, ..., 6j∈ . Therefore 
( ) 3/11 =SP , ( ) 9/12 =SP , ( ) 9/13 =SP , ( ) 27/14 =SP , ( ) 27/15 =SP  and ( ) 27/16 =SP . The event 

of interest is U
6

1=

=
j

jSS . The events jS , { }6...,,2,1∈j  are mutually exclusive, then 

( ) ( )
6

1
1/ 3 2 1/ 9j

j
P S P S

=

= = + × +∑  3 1/ 27 2 / 3× = . 

3.3.2. Second task: determining the expected number of explorers which come out from 
the cave. Let us define the random variable X: Quantity of explorers that are able to come 
out from the cave in at most six days, among 27. The random variable X is a binomial random 
variable with parameters 27n =  and 2 / 3p = . The expected number of explorers that come 
out from the cave is the expectation of the random variable X. Therefore 
( ) 27 2 / 3 18E X n p= × = × = , where ( )E X  denotes the expectation of  a random variable X. 
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In this case a specific personal technique has been elaborated for the first sub–task and its 
corresponding technology. This technique is based on the enumeration of the possible paths 
in increasing order according to their lengths. 

The corresponding technology to the techniques used in the remaining sub–tasks and in the 
second task belongs to the field of Probability. In the second and third sub–tasks, the 
technological elements are the concepts of independent events, mutually exclusive events and 
properties about the calculation of their probability. In the second task, the used technology 
corresponds to the concepts of binomial random variable and the expectation of a random 
variable. The theory that justifies this technology is Probability Theory. 

3.4. Solution 4  

A person that does not know the necessary mathematical tools to achieve a solution like those 
given previously, can appeal to a simulation experiment strategy and obtain an estimated 
result. This simulation can be made using balanced dices, charts of random numbers, an 
appropriate software, etc. It is necessary that a correspondence exists between the original 
problem and the simulated problem that makes them equivalent in terms of probability. Thus, 
the selection of a road in the simulated problem should be obtained with identical probability 
as in the original problem. 

In this case the random numbers generator of the software Microsoft® Excel has been used, 
as well as some predetermined functions to create formulas, in order to guarantee the 
adjustment of the simulation process. 

To represent the random experiment the following model is built: each one of the possible 
roads that an explorer can select from the interior of the cave is represented with an element 
of the set { }1, 2, 3 , like this:  

1: road which leads to the exterior in one hour. 

2: road which returns to the cave in two days. 

3: road which returns to the cave in three days. 

The choice of a road at random is represented by the random generation of one of these three 
numbers. Each one of the N repetitions of the experiment concludes when an explorer reaches 
the exterior or he/she dies for lack of provisions, this happens in at most three trials. It is 
necessary to generate at most three numbers at random of the previously mentioned set to 
match the pattern to the conditions of the original problem. When the experiment concludes 
before the third trial, the symbol 0 is used instead of a new generation at random of a number 
in the set { }3,2,1 . When the process concludes, each three–tuple will contain a 1 at most. 
The quantity of three–tuples that contain a 1 represents the quantity of times, n, that the event 
of interest was observed, i.e. the quantity of times that an explorer reaches the exterior. 

3.4.1. First task: determine the probability that an explorer comes out from the cave. 
From a simulation, 666=n  three–tuples that contain a 1 are obtained in 1000=N  repetitions 
of the experiment. Therefore, the probability that an explorer comes out from the cave is 

666.0/ == Nnp . 

3.4.2. Second task: determining the expected number of explorers which come out from 
the cave. If twenty seven explorers are inside the cave, it is expected that 

18 982.17666.027 ≅=×  explorers reach the exterior. 

The task, proposed in the probabilistic frame, was performed in the statistical frame because a 
relative frequency was calculated. The frame change allowed to avoid the knowledge of the 
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probability function properties that has been used in the previous solutions. Finally, the 
answer was given in the probabilistic frame. 

To carry out this task it is necessary to build a particular model to represent the random 
experiment. In the pattern, the possible roads are represented by the first three natural 
numbers and the action of choosing a road by the selection of one of these three numbers at 
random. 

The employed technique to perform the first task consists in repeating a random experiment a 
large number of times, N, then to count the number of times, n, that the event of interest was 
observed; and finally to calculate the relative frequency /n N  and to assign the probability 

/p n N=  to the event. 

The corresponding technology is the Frequency Interpretation of Probability. The theory 
associated to this technology is the Law of the Large Numbers of Probability Theory that is 
proved in advanced courses of Probability. 

The technology corresponding to the technique used in the second task is based on the 
concept of direct proportion. The theory that justifies it is the theory of proportions. 

4. The problem solution procedures under the assumption (B)  
The statement assigns to the reader two tasks to carry out. The first task consists in 

determining the probability that an explorer comes out from the cave. The second task 
consists in determining the expected number of explorers that come out from the cave. 

As in the previous assumption, one of the three roads is selected at random. In this case it is 
supposed that the provisions are available without limit of time. Next, three possible solution 
ways are shown. 

4.1. Solution 1 

4.1.1. First task: determine the probability that an explorer comes out from the cave. Let 
us consider the random variable X: The minimal number of necessary trials in which an 
explorer comes out from the cave. The image of the random variable X is the set of the 
positive integers. For each positive integer i, let Ai be the event An explorer chooses the road 
that leads to the exterior in the ith trial. It is clear that ( ) 3/1=iAP  and ( ) 3/2=iAP . The 
events iA , for each positive integer i, are independent. So ( )P X i= =  

( )1 1... i iP A A A−I I I ( ) ( ) ( )ii APAPAP ×××= −11 ...  ( ) ( )12 / 3 1/ 3i−= × . Let A be the event An 

explorer comes out from the cave. An explorer can come out from the cave in i trials, for each 

positive integer i, then ( ) ( ) ( ) ( ) 1

1 1
1/ 3 2 / 3 i

i i
P A P X i

∞ ∞
−

= =

= = = × =∑ ∑  

( ) ( )
0

1/ 3 2 / 3 j

j

∞

=

×∑ ( ) ( )1/ 3 1/ 1/ 3 1= × =⎡ ⎤⎣ ⎦ . 

4.1.2. Second task: determining the expected number of explorers which come out from 
the cave. From the previous result it is deduced that an explorer, sooner or later, will come 
out from the cave (provided he/she lives enough!). Then, it is expected that 27 explorers 
come out from the cave. 

The technology corresponding to the technique used in the first task consists in the use of the 
following concepts: random variable, independent events, probability calculation properties, 
geometric series and calculation of the convergent geometric series sum. The theory that 
justifies this technology is Probability Theory and Mathematical Calculus. 
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The technology corresponding to the technique used in the second task is based on the 
concept of direct proportion. The theory that justifies it is the theory of proportions.   

4.2. Solution 2 

4.2.1 First task: determine the probability that an explorer comes out from the cave. Let 
us consider the random variable X: Number of trials necessary until choosing for the first 
time the road that leads to the exterior. The random variable X is a geometric random 
variable with parameter 1/ 3p = . Therefore the probability that an explorer needs x trials to 

come out from the cave, for each positive integer x, is ( ) ( ) ( ) 11/ 3 2 / 3 xP X x −= = × . Let S be 

the event An explorer comes out from the cave, then ( ) ( )1P S P X= ≥ = ( )
1

1
x

P X x
∞

=

= =∑ . 

The second task is equal to that in the point 4.1.2. 

The technology corresponding to the technique used in the first task consists in the 
employment of the geometric random variable concept. The theory that justifies this 
technology is Probability Theory. 

4.3. Solution 3 

4.3.1 First task: determine the probability that an explorer comes out from the cave. The 
problem can be model using Markov chains. The state of a system can be observed a finite 
number of times. In this case, there are two possible states  

State 1: the explorer is in the cave. 

State 2: the explorer is in the exterior. 

In a given trial, the probability that an explorer who is in the state 1 remains in the same state 
is 2/3 and the probability that he/she changes to the state 2 is 1/3. The state of the system is 
observed for each time (in this case it corresponds with each selection of a road made by an 
explorer). At time t, which is random, the conditional probability of transition from a given 
state to any other does not depend on the way the state was reached; therefore the labelled 
directed graph (see [5]) that it is shown in Figure 3 represents a Markov chain.  

For each positive integer k and each integer { }1, 2j∈ , let ( )j
kZ  be the event The system is in 

the state j at time k. The event ( )j
kZ  in this context means an explorer is in the state j after the 

kth trial. The system is a Markov chain with two possible states, because for each positive 
integer k and integers { }1,..., 1, 2kj j ∈ , the events ( ) ( ) ( )kj

k
jj ZZZ ,...,, 21

21 satisfy the condition 

 ( ) ( ) ( )( ) ( ) ( )( )1 11
1 1 1...k k k kj j j jj

k k k kP Z Z Z P Z Z− −
− −=I I , (1) 

where ( | )P X Y  denotes the conditional probability of  X given Y. 

 

 
Figure 3. Graph corresponding to the Markov chain. 

The equation (1), denominated ‘Markov condition’, it is satisfied in this case since the 
conditional probability of transition from a given state at time k only depends on the state 
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reached in the previous immediate trial, i.e. at time 1−k , and it is independent of how this 
state was arrived. Also, for any states ,i j , the conditional probability that the Markov chain 
be in the state j at time t, given that it was in the state i at time 1−t , denoted by ( ),P i j , is 
independent of t. Then the Markov chain is homogeneous. The probabilities of transition 
( ),P i j  of the Markov chain with two states that it was defined can be represented by the 

following transition matrix: 

( ) ( )
( ) ( )
1,1 1, 2 2 / 3 1/ 3
2,1 2,2 0 1

P P
P

P P
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

When the state 2 is reached, it is impossible to leave it, i.e. ( )2,1 0P = . This means that the 
state 2 is absorbent. It interests to find the conditional probability of arriving to the absorbent 
state 2, given that it is left from state 1. This conditional probability is denoted by ( )12u . 

The following basic result is used (see [4], p. 166): If j  is an absorbent state in a Markov 
chain with states { }1, 2, ..., r , then the probabilities ( )1ju , ( )2ju , ..., ( )ru j  are the only 
solution of the equations system 

( ) 1=ju j , 

( ) 0=iu j , if the state j cannot be reached from the state i, 

( ) ( ) ( )
1

,
r

j j
k

u i P i k u k
=

= ×∑ , if the state j can be reached from the state i. 

Therefore, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2
1

1 1, 1,1 1 1,2 2 2 / 3 1
k

u P k u k P u P u u
=

= × = × + × = × +∑  1/ 3 , 

from it results ( ) 112 =u . That is to say, the probability that an explorer comes out from the 
cave is equal to 1. 

The second task is equal to that in the point 4.1.2. 

The technology corresponding to the technique used in the first task is based on the concept 
and some properties of Markov chains. The theory that justifies it is Theory of Markov 
chains. 

5. Final considerations 

In this report some procedures have been analysed to solve a probability problem. In 
the finite case four solutions are shown that arise from four techniques to begin to solve the 
problem: possible paths are described through a tree diagram, in terms of time and in terms of 
events; the fourth solution implies a simulation process. In the infinite case three solutions are 
shown using: the description of events in terms of random variables, the identification of the 
geometric distribution, and the employment of Markov chains. 

To propose this problem to future mathematics teachers allows them to find solutions, 
integrating knowledge that appear in diverse contexts and to analyse the didactic aspects of 
these solutions. This analysis allows them, for example, to decide to what group of students 
the problem will be proposed or what solution procedures are expected that they use 
according to the techniques and institutional technologies they have. 
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This article is about the appropriateness, need and implementation of undergraduate Bayesian Statistics. The 
article shows how the Bayesian paradigm is increasingly applied in many and various fields yet there is not a 
corresponding number of undergraduate courses preparing students for this exciting and useful methodology. A 
method for introducing Bayes rule is suggested using a table of counts and then adapting it to show how a prior 
is updated to a posterior. The software package WinBUGS is used to show the Bayesian equivalent of a 2 
sample t-test for comparing means with suggestions on how to bring out differences in the two paradigms both 
in terms of interpretation and data adjustment. Philosophical advantages of the Bayesian approach are discussed. 
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Introduction 

Bayesian methods are increasingly applied to real problems posed by science, yet this 
contrasts with the type of courses on offer at undergraduate level. Most courses are taught 
within a classical frequentist framework and very few with Bayesian methodology. Berger 
[1] in 2000 gives an overview of Bayesian application listing activity in diverse fields such as 
archaeology, atmospheric sciences, economics and econometrics, education, epidemiology, 
engineering, genetics, hydrology, law, measurement and assay, medicine, physical sciences, 
quality management through to social sciences. Areas of theoretical development abound, 
Berger [1] lists some 32 topics from biostatistics to time series. Press [2] in 2003 devotes 
most of appendix 5 to citing technical papers that apply the Bayesian paradigm in solving 
many and varied real problems across a range of 20 fields. Ashby [3] in 2006 gives a 25 year 
review of Bayesian statistics in medicine by looking at papers that appeared in Statistics in 
Medicine stating in her summary 

...Bayesian statistics has now permeated all the major areas of medical statistics, including 
clinical trials, epidemiology, meta-analyses and evidence synthesis, spatial modelling, 
longitudinal modelling, survival modelling, molecular genetics and decision-making in 
respect of new technologies. 

She also gives a brief discussion of what she thinks the future will hold and predicts that 
Bayesian statistics will increasingly be applied in newer and rapidly developing areas such as 
the human genome. Those areas already serviced by classical methods are likely to retain 
their dominance. 

Books devoted to Bayesian theory now are common. The University of Auckland’s voyager 
library search engine gave over 200 hits for the keyword “Bayes” most of which are 
classified under the subject of “Bayesian Statistical Decision theory”. 

With the growing importance of Bayesian methods it would seem reasonable to expect some 
courses to be offered in an undergraduate statistics curriculum. In the following sections the 
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Bayesian paradigm will be reviewed by way of examples. These will be presented to show 
how the Bayesian methodology could be introduced to students, with examples of 
implementation and comparison at various levels of assumed student proficiency. 

2 Introducing and applying the Bayesian paradigm in year two or three 

Moore [4] in 1997 gave four reasons to hesitate teaching Bayesian ideas in a first 
course in working statistics. 

(i) Bayesian ideas are rarely used in practice 

(ii) There are no agreed standard methods to deal with standard statistical problems 

(iii) Conditional probability is difficult to teach to students 

(iv) Bayes for beginners tends to impede the move toward data analysis and design of data 
production 

Some thoughtful and interesting replies to these points from a Bayesian stance have already 
been forwarded by Albert [5], Berry [6] and Lindley [7]. As for objection (i), it is true that 
frequentist methods are still the dominant paradigm, but as has been pointed out in the 
introduction, Bayesian methodology is increasingly applied as a look through the volumes of 
Case Studies in Bayesian Statistics, Springer-New York, will verify. Objection (ii) is not 
strictly true since Bayes formula is the method, what this criticism amounts to is that priors 
are largely subjective. As Berry points out the Statistician employing standard methods is 
acting more like a technician than a scientist. The Bayesian methodology allows the 
statistician to be a scientist building the prior and details of Bayes rule to answer the problem. 
Objection (iii) is possibly true but can be helped by showing the universality of conditional 
probability by way of tables of counts and conditional probability definitions. Moore’s [8] 
statement in his reply is very telling and one cannot help but be sympathetic to Lindley and 
Albert since It seems reasonable that all probability is indeed conditional, Moore says 

It amounts to insisting that, to find the probability of three heads in ten tosses of a fair coin, 
a student must think of this as a conditional probability given p = 0.5. 

In response to this one might ask – what does the assumption of “fair coin” mean when 
calculating the probability? Does it matter? With regard to hypothesis testing, the P-Value is 
made conditioned on the assumption that the NULL hypothesis is true. These are essential 
issues of material consequence, they comprise issues that a student must grasp in order to 
progress further in his or her understanding of Statistics. Objection (iv) is to some degree 
answered pragmatically by those who have actually implemented Bayes for beginners. Albert 
[9] and Bolstad [10] did not hesitate to teach Bayesian inference at an introductory level. 
Their courses included an emphasis on data analysis and having done things differently from 
each other, believe their courses are effective and serve their students well. 

Having taught introductory first year statistics from a frequentist standpoint for a number of 
years, I tend to agree that the mathematical maturity of students needs to be higher than what 
could be reasonably expected of a large number of level one introductory students. Parameter 
recognition for various conjugate priors belonging to certain distributions, whose names 
alone would probably be enough to scare many stage one students off is probably too much. 
Keeping it simpler means only dealing with discrete distributions and this would limit what 
could be covered. 

It may be better to introduce Bayesian statistics at a second or third year level so that the 
mathematical and statistical maturity of students is higher, enabling a more in depth and 
satisfying presentation of Bayesian methods. Some tentative efforts in trying Bayesian theory 



 153

at first year level at the University of Auckland Statistics Department would seem to confirm 
this. 

2.1 The plan 

In order to teach a new topic in a statistics course, previous knowledge should be built 
on, commonalities repeated and linked and important differences emphasized so that the way 
forward be made easier and more intelligible to students. The definition of probability is 
clearly a difference. In the Bayesian setting probability is essentially expressing the 
knowledge one has of a parameter, hypothesis etc so that where in frequentist thinking a 
parameter is fixed and unknown, in the Bayesian paradigm a distribution is assigned. 

In the case of building the Bayesian paradigm for students it may be thought that the 
foundations are so different that a new start be made with no attempt to reconnect with 
previously taught statistical and probabilistic theory. This I believe would be a mistake since 
there is a direct link to what would often be traditionally taught in many first year statistics 
courses, namely “Bayes rule”. In some cases Bayes rule will not be explicitly taught and 
instead a table of counts incorporating the prior information is constructed so that the 
posterior distribution is found by calculating a simple conditional. Students may be quite 
unaware of labels such as “prior” and “posterior” these connections can be made and Bayes 
rule shown to be an equivalent way to find the desired conditional probability. As Albert [11] 
and Berry [12] have shown the Bayesian paradigm can most easily be introduced using 
discrete distributions in a tabular format where Bayes update paradigm can be made more 
evident. 

Since all the students entering the course would already have been exposed to the standard 
frequentist tests it would make sense to revisit them again but this time re-analyze from a 
Bayesian perspective and compare the results. Two Bayesian tools would be helpful, the first 
is Bayesian multiple hypothesis testing and the second is posterior high density intervals. The 
first is suitably difficult for a level 2 or 3 course and the second is easily taught with some 
demonstrations in R or S-Plus and are generated automatically in WinBUGS. 

2.2 Bayes theorem revisited 

In the introductory text Chance Encounters, Wild and Seber [13] make use of the 
following Elisa HIV test problem in which prior HIV information is updated with an 
imperfect test to determine the probability of infection with HIV. For people who are HIV 
positive, 99.7% test positive and for people who are HIV negative, 0.3% test positive (false 
positive). It is estimated that 0.1% of the New Zealand population are HIV positive. Table 1 
shows how the information can be tabulated, from this questions of interest can be formulated 
and answered. 

 Test Result  

HIV Status Test +ve Test -ve Total 

HIV+ 997 3 1000 

HIV- 2997 996003 999000 

Total 3994 996006 1000000 
Table 1. Table of counts for HIV testing 

 

This procedure will often be done in the context of teaching tables of counts and following 
the recommendations of Moore and others little in the way of formulaic expressions will be 
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used, rather the table itself will be appealed to in solving conditional questions like 
establishing the values of )|Pr( veTestveHIV ++  and )|Pr( veTestveHIV −+ . The table 
can be reformatted to bring out Bayes Rule and the Bayesian paradigm by forming the Bayes 
box which Albert [11] and Albert and Rossman [14] use effectively. 

We are told that 0.1% of the population of NZ has HIV, which means that 99.9% of the NZ 
population does not have HIV. This can be used to define an individual’s Prior distribution, 
we are interested in updating our knowledge of the distribution of an individual’s HIV status 
given the observed test result. 

Suppose the test result is positive then what will be the distribution of his or her HIV status 
given this latest information? We can use Table 1 to calculate it (we have used the prior 

information in constructing the table) 25.0
3994
997)|Pr( ≈=++ veTestHIV  

75.0
3994
2997)|Pr( ≈=+− veTestHIV  or we can construct Table 2 and implement Bayes rule 

).|Pr()Pr()|Pr(
,

+++++ ∝

×∝

HIVTestHIVTestHIV
likelihoodpriorpost

veve  

 

HIV Status Prior Pr(Test+|Model) Product Posterior 

HIV+ 0.001 0.997 0.000997 0.25 

HIV- 0.999 0.003 0.002997 0.75 

Total 1 1 0.003994 1 
Table 2. Bayes box 

Where the likelihood is simply the probability of the observation given the model. Once the 
components and structure of equation 1 are understood, the methodology can then be 
extended to the continuous case by analogy. 

2.3 Old problems new paradigm 

A good theme for a third year course would be to compare frequentist and Bayesian 
methods, results and possible interpretations. To facilitate this, an equal tail 95% density 
region for the posterior will be calculated. The Bayesian hypothesis test technique of Neath 
and Cavanaugh [15] will be used to calculate ).|Pr( 0 dataH  

As an example of what might be done, the following uses a two sample comparison of means. 
The student will be familiar with the 2-sample t-test with its confidence interval and p-value. 

Possibly the easiest software to use in running Bayesian problems at a second or third year 
level is WinBUGS [16]. The students at an undergraduate level need not have to be familiar 
with the Gibbs sampler and MCMC, they can be told that the software merely produces a 
sample from the posterior after it has been coded in a WinBUGS model. The MCMC Gibbs 
sampler can be defined as a black box (interestingly the compiler used to make the 
WinBUGS executable is called Blackbox) which usually works well in producing posterior 
samples which a modeler can use to make conclusions about the parameter(s) of interest. 

Basic theory on non-informative priors would need to be taught and this can be easily done 
using Jeffreys’ theory for local and scale parameters as given by Robert [17]. As an example 
we shall examine the talk times (minutes) until recharge for different batteries used in cell 
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phones taken from the University of Auckland’s introductory stage 1 statistics workbook 
2007 (see Table 3). 

 
 

For both battery types we shall assume the time till recharge is normally distributed and for 
the Nickel Cadmium batteries, 

).,(~ 2
11 σµNTime  

Similarly for the Nickel-metal hydride batteries, 

).,(~ 2
22 σµNTime  

 

Since the data in this instance are written as a list with Battery taking 1 or 2 for distinguishing 
the type of battery, the following WinBUGS model code with a FOR loop was used to 
produce a sample from the posterior. 

model 

{ 

for( i in 1 : N ) { 

Time[i] ~ dnorm(mu[Battery[i]], tau[Battery[i]]) # Likelihood 

} 

mu[1] ~ dnorm(0.0, 1.0E-6) # priors 

mu[2] ~ dnorm(0.0, 1.0E-6) 

tau[1] ~ dgamma(0.001, 0.001)# priors 

tau[2] ~ dgamma(0.001, 0.001) 

delta<-mu[1]-mu[2] 

} 
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In this case the model does not assume the standard deviations are equal. Non informative 
priors are placed on the means and precisions so that the results will not be sensitive to them. 
A logical node is defined (delta) so that the distribution of the difference of means can be 
monitored and summarized. The posterior density plots of each parameter (mu[1] and mu[2]) 
and delta with their summary statistics are shown in Figure 1. 

 
Figure 1. Posterior high density regions and posterior distributions for the Battery example as produced in 

WinBUGS 

 

The theory on hypothesis testing yields the following result, Pr(H0|data) = 0.00004. 

Students can refresh their knowledge of frequentist methods and perform a two sample t-test 
using SPSS or some other appropriate software to form a table such as shown in Figure 2. 

The frequentist P-value and 95% confidence intervals are 0 and (12.4,26.6) respectively. 
These can easily be compared with the Bayesian output. Whereas the frequentist methods 
would require a different test (ANOVA when assuming equal variances) to deal with more 
groups, the Bayesian code would need very little amendment. 

3 Interpretative advantages 

The exciting challenge of teaching Statistics with regard to student perceptions is to 
make the subject relevant and interesting. The Bayesian intervals are intuitive and give 
straightforward answers to the kind of questions scientists, engineers and researchers in 
general would ask. What interval contains the difference in means (delta = mu[1] − mu[2]) 
with probability 0.95? One such answer is (12.24, 26.72). What is the probability that mu[1] 
exceeds mu[2] by a minimum of 12.24 and maximum of 26.72? The answer is 0.95. This 
contrasts markedly with the classical confidence interval which rests on multiple samples and 
long range relative frequencies. What realistic question would cause an individual to respond 
with a frequentist confidence interval as the answer? 
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Figure 2. Frequentist two sample t-test for the battery data as produced by SPSS 

 

The 2.5% density posterior tails define a region that is comparable with the frequentist 
interval in size (see figure 2, this is due in part to the priors assigned), however the 
interpretation is very different. It can often be the case that the frequentist P-value gives 
misleading results especially when a point NULL hypotheis is tested. It can be shown that a 
NULL hypothesis is rejected when the posterior probability of the NULL is quite high. 

An interesting exercise is to set up an excel worksheet that calculates simultaneously the 
probability of the NULL hypothesis given the data and the P-value consequent to adding a 
constant to the data for the Nickel-metal hydride group, this will move the two groups closer 
together and increase the P-Value. Play the game until the P value is just under the 5% level 
and then see what the Bayesian posterior probability of the NULL hypothesis is. If 12min. is 
added to the second group, Pr(H0|data) = 0.4 and the P-Value is 0.04. The NULL hypothesis 
would be rejected at the 5% level when its posterior probability is 40% with non-informative 
priors. 

This kind of exercise is fun to do and is not difficult to set up, it highlights some important 
issues about interpretation and emphasizes warnings that have frequently sounded in the 
literature by such as Berger and Delampady [18], Berger and Selke [19] and others about P-
values. 

4 Philosophical advantages 

The above battery example with unadjusted data gave similar results regardless of the 
paradigm. This is great news for both parties, the problem remains however that the 
frequentist and Bayesian interpretations are necessarily different and furthermore that some 
examples will not agree in their conclusions. 

The philosophical advantages of the Bayesian approach are very clear. The likelihood 
principle says essentially that all experimental information must come through the data 
observed and expressed through the likelihood function. Two likelihoods proportional to one 
another bring the same information about the parameter. When a classical P-value is 
calculated more than the observed experimental data is used. The P-value is the probability 
that given the NULL is true, random variation would produce a sample estimate at least as 
extreme as the one obtained by experiment. But this breaks the likelihood principle since 
unobserved data is used in the likelihood to make inference. Maximum likelihood procedures 
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as well as Bayesian methods preserve the likelihood principle. This means that there will 
always be a possible disparity in results between the frequentist and Bayesian paradigms. 

The Bayesian paradigm is closer to the scientific investigative cycle, where a hypothesis or 
theory is formulated after which data is gathered and information updated. The prior 
expresses initial beliefs about a parameter, this is then updated by collecting experimental 
data which is expressed through the likelihood and combined with the prior to form the 
posterior. Just as science is cyclical so also is the Bayesian paradigm so that a previous 
posterior becomes the prior and updates to form the new posterior, see Figure 3. In this 
context the prior’s subjectivity is closer to reality and can be presented positively. 

 
Figure 3. The scientific cycle using Bayesian notions 

5 Conclusion 

Bayesian methods are increasingly applied in real world problems. The paradigm rests on 
Bayes rule which once learnt is applied repeatedly. This has a unifying effect and ties all 
Bayesian applications together and contrasts sharply with the maize of frequentist methods 
which seem sometimes to be unrelated and ad. hoc. Inference is far easier to interpret and 
teach since a posterior interval will contain the parameter of interest with known probability. 
The posterior probability of a hypothesis is calculated and gives a more direct statement of its 
likelihood. The Bayesian approach would most likely be easily introduced using discrete 
distributions, generalizing afterward to the continuous case. A possible thematic undercurrent 
to undergraduate Bayesian statistics would be to resurrect all the main frequentist tests and 
give Bayesian alternatives with comparisons made on the results of the two paradigms. This 
would highlight the Bayesian and frequentist strengths and weaknesses. The course would 
likely be comfortably taught at the second or third year of undergraduate studies. However a 
well planned first Bayes course could be taught after due consideration was given to the 
student’s mathematical and statistical pre-requisite knowledge. 
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Abstract 

We learn from experience. Actually, many times we learn badly from one single experience, 
since we often ignore the role that chance plays towards success or failure. How come that 
we make decisions under uncertainty every day, but at the same time we have a natural 
tendency to reject reasoning that involves probabilistic arguments? Why is our intuition so 
dissociated from "reality" when probabilities are involved? What tools can be used to help 
students (and us) bridge this gap? 
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Bringing technology into universities of technology 

Using spreadsheets in teaching numerical solutions of 
first-order differential equations 
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Although South Africa is one of the largest users of the Internet in Africa it is still far behind First World 
countries such as America. In many parts of the world it is being assumed that students entering university are 
computer literate, but in the environment that this study was done this is not the case. This “digital divide” is 
evident at the Vaal University of Technology since many of our students had little or no exposure to computers 
at school level. Furthermore, a subject such as mathematics is traditionally taught by means of chalk and talk 
and this paper tries to bring together technology, in the form of spreadsheets and two very important concepts in 
engineering mathematics, namely differential equations and numerical methods. Students spend time in 
computer labs improving their technological literacy while at the same time mastering the cumbersome 
algorithms needed to solve first order differential equations with numerical methods. Our choice of spreadsheet 
is Excel, which in particular is simple, practical and widely available.  

 

Key words: First order differential equations, numerical methods, spreadsheets, Excel, digital divide. 

1. Introduction 

A variety of scientific and engineering problems arise due to the fact that natural 
phenomena involve change and are best described by equations that relate changing 
quantities. This is the foundation of differential equations, and their study forms one of the 
most challenging branches of mathematics. A fairly simple example of an everyday problem 
is computing the position of a moving particle using its velocity and acceleration or the 
cooling or heating of a body dependent on the surrounding temperature. These quantities are 
dynamic and we therefore need to find a function from the prescribed information that 
describes the changing quantities. Judging from the perspective of a university of technology 
in South Africa, students are seldom comfortable with this concept when it is first introduced, 
usually in the second semester of their studies. Yet, as engineering students this must be one 
of the fundamental concepts for later understanding.  

In conjunction with the difficulties encountered when trying to visualise the solutions of 
differential equations, numeric solutions of differential equations are found to be 
cumbersome to calculate. Add to this the inexperience of students on Computer Assisted 
Instruction (CAI), and the ideal opportunity arises to address all three problematic areas 
simultaneously and enhance the learning experience in the process.  

The aim of the study is to show how Excel can be used to teach the principles of first-order 
differential equations to relatively under prepared students at a South African university of 
technology. 
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2. The use of spreadsheets in education 

The first electronic spreadsheets appeared in 1979 and since then more educators have 
been turning towards spreadsheets, especially where repetitive calculations are called for. 
John E Baker [1] gives a brief outline of the first 25 years of spreadsheets and provides 
arguments and motivation for further research in this area. Hsiao [2], makes the very valid 
point that while computers are clearly useful tools for education, one of the main 
disadvantages is having to program them. Although there are several sophisticated 
mathematics packages available, such as Mathematica, Matlab, Maple and Derive, there is 
seldom enough time when teaching mathematics to spend time on mastering the coding 
required for these packages in order to appreciate the benefits. The cost involved in 
purchasing these packages is also a prohibitive factor. Morishita et al [3] states that in their 
experience it took a long time to learn computer languages and it is hard to obtain proper 
results in a limited time. The spreadsheet offers an alternative to conventional programming 
and allows experimentation with numerical methods [4]. Furthermore, the spreadsheet is 
relatively simple to use and almost instantaneous numerical simulations are possible. With 
the first appearance of spreadsheets, they were welcomed as “a success story of making 
programming easier” [5]. Nardi and Miller [6] add that the biggest advantage of spreadsheets 
is not cognitive but motivational: ‘… after a few hours of work, spreadsheet users are 
rewarded by simple functioning programs’. Smith [7] predicts three positive outcomes for 
students when spreadsheets are used as a mathematical teaching tool. 

• Reversal of the declining interest in mathematics 

• Improvement of technological literacy and enhancement of career preparation 

• Revitalization of mathematical skills through problem solving 

Excel, in particular, is a spreadsheet program that is simple, practical and widely available. 
This makes it an excellent tool for Computer Assisted Instruction (CAI) and unlike the 
packaged learning programs mentioned above; students can learn mathematical concepts by 
actually writing formulas into the worksheets. However, no programming knowledge or skills 
are required.  

3. The digital divide 

The concept of “digital divide” is well established. It refers to the disparity between those 
who have use and have access to Information Communication and Technology (ICT) tools, 
and those who do not. Below are statistics [8], [9] relating specifically to the Internet and 
access to it, which demonstrates this “digital divide” between the First World and the Third 
World: 

• In 2005 the number of Internet users passed the 1 billion mark 

• 18.3% of users live in the USA (First World) 

• Of just over 900 million African residents, about 2.5 percent (23.5 million) are online, 
compared to the worldwide average of 16 percent. (Third World) 

• South Africa is one of the largest users in Africa at 3.6 million.  

A survey done by Lim [10] at Deakin University in Australia found that the Faculty of 
Science and Technology students on the rural campus had the lowest overall level of ICT 
skills (both spreadsheets and other skills) of all enrolled first year students at the start of 
2003. In Africa 89% of people live in rural areas, where the needs are the greatest. Also, the 
work of Hellwig and Lloyd [11] indicated that the “digital divide”, between those who have 
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and those who do not have computer access correlates with the difficult financial conditions 
in many of the rural communities. 

Moreover, Hodge et al [12] suggests that information technology is rapidly changing the way 
individuals live, firms do business and governments interact. Yet, the pessimists paint a 
gloomy picture of a world split even further apart between the ICT have’s and the have not’s. 
In South African schools there is a very limited use of IT in the pedagogic process, except at 
well-endowed private schools. 

Watkins [13] says: ‘Today’s students are completely at ease using a computer for everything 
from researching a term paper to synching data from their PDA to creating CAD drawings.’ 
Teaching in a third world environment such as we do does not necessarily warrant the same 
reaction.  

4.  Universities of technology 

The Ekuhuleni Campus of the Vaal University of Technology, where this study was 
conducted, is situated in the Gauteng province, one of the most densely populated regions in 
the country. Universities of technology attempt to provide greater learning opportunities in 
making the student more skilled, more competent and more employable by taking the 
institution into the workplace liaising with industry to ensure that prospective employees 
receive a relevant education. 

Institutes of technology and polytechnics have existed at least since the 18th century but 
became increasingly popular as the needs for industrialisation grew. In some cases, 
polytechnics or institutes of technology are engineering schools or technical colleges. 
Polytechnics and institutes of technology are considered universities when they have 
autonomy to offer masters and doctoral degrees as is the case with the Vaal University of 
Technology. At the same time these institutions must participate in independent research to 
be formally considered a university [14]. 

From a survey of a class of 49 engineering students in their third semester, the students in this 
study,   it appeared that almost two thirds were from “rural” areas. Almost 60% did not have 
access to a computer at home and only about 40% had regular computer access.  The majority 
of students seldom had access to computers at school. Of those with regular access, most had 
computer studies as a school subject and computer literacy was not taught in general.  

At South African universities of technology an introductory computer skills subject is 
introduced in the first semester of the first year. For engineering students it would span over a 
six month course, which would cover the basics of Windows, Word and Excel. Unfortunately 
it is often the case that they do not have much exposure after this initial introduction, 
primarily due to the lack of hardware, time constraints and teaching resources and do not 
retain the knowledge sufficiently.  

This brings about a serious dilemma. As the name “university of technology” suggests, our 
engineering students should be at least proficient in the use of computers and basic software. 
Yet, since computing facilities within schools depend largely on financial resources, many of 
our students had little or no exposure to computers at school level. At university level 
computer facilities are available, perhaps not always to the ideal extent but there is an added 
problem. A subject such as mathematics is traditionally taught by means of chalk and talk and 
it takes a concerted effort to shift this paradigm. So despite the digital divide resulting in a 
technological under preparedness it is still the task of the lecturer to find a way to see that 
technology is part and parcel of the universities of technology. We feel the answer lies in the 
use of spreadsheets. 
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5. Methodology 

This study was conducted with a group of 49 students in their third semester of engineering 
mathematics. On completion of the section on numerical methods, which included lectures 
and laboratory sessions, students completed a questionnaire to determine their learning 
experiences. The questionnaire comprises of questions on  

• previous exposure to technology at school level and at home 

• preference of a technology-based learning environment to “chalk and talk”  

 

The questionnaire was followed by informal student interviews, based on responses to the 
questionnaire. We report on the findings in the Findings section.  

At the Vaal University of Technology students are in their third semester when first 
introduced to using numerical methods to solve differential equations of the 

form ( , )dy f x y
dx

= . The course starts with Euler’s method moving on to Runge-Kutta of the 

second and fourth order. After introducing the concepts in a theoretical class the student 
spends the next three classes of one hour each putting the relevant formulas into a 
spreadsheet. Students can also use the computer lab on a voluntary basis, but these classes are 
generally reserved for Information Technology students and are thus not that freely available.  

Starting with Euler’s method the student is taught some of the basics of using Excel 
effectively along with some basic graphing techniques. By the second practical session 
Runge-Kutta order two is introduced, which has a “more complicated” algorithm. Time does 
not allow us to do Runge-Kutta order four in a practical class. Mathematics 3 consists of a 
full program and does not allow us more time on this particular subject matter. Unfortunately 
we have not yet moved to assessing the student practically so for examination purposes they 
still have to do the procedures by hand.    

In our approach to using Excel we focus on simplicity. In [15], in a similar study, the lecturer 
touches on inserting the formulas but then quickly moves on to using the built-in macro 
language (visual basic) as the Runge-Kutta fourth order algorithm is cumbersome to work 
with. We try to avoid the use of macros as once a program is written it can often mask the 
mathematics that it is intended to represent while typing in the formulas ensures that the 
procedure is constantly exposed [16].  

Shannon [17] maintains: “Calculating fourth order Runge-Kutta approximations with a 
calculator is so tedious that it is rarely instructive”, and then turns to Lotus and Derive for 
calculating fourth order Runge-Kutta approximations and graphing them. Although these 
computer packages are easier to master than Matlab and Mathematica they are not available 
to students at our campus because of financial constraints. 

6. The Excel procedure 

We illustrate our use of Excel through an example.  

Solve xy
dx
dy

=  with initial condition y (1) =1 and step size 0.1 using Runge-Kutta of the 

second order. 

• Enter the heading  n into cell A1  

• Enter the step size heading h into cell B1 
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• Form the next four columns with headings as indicated: 
A B C D E F

1 n h x k1 k2 y  
• Enter the value n = 0, the actual step size 0.1h = and initial values for x and y into 

row 2. 
A B C D E F

1 n h x k1 k2 y
2 0 0.1 1 1  

To insert the Runge-Kutta formulae of the second order: 

•  For calculating x h+ : 

Enter =C2+$B$2 into C3.  

Take note that using $B$2 will keep the value of h = 0.1 fixed when copying the cells 
down. 

• For calculating 0 ( , )f hf x y= : 

Enter =$B$2*(C2*F2) into D3.  

• For calculating 1 0( , )f hf x h y hf= + + : 

Enter =$B$2*((C2+$B$2)*(F2+D3)) into E3.  

• For calculating 0 1( )y x h y hf hf+ = + + : 

Enter =F2+0.5*(D3+E3) into F3.  

• Now copy cells C3 through to F3 down for as many lines as you like. 

Finding the analytical solution to the equation is 2
12 −

=
x

ey  (it is not always possible to solve 
analytically) makes it possible to compare the actual solution to the Runge-Kutta solution. 
This comparison opens many doors to discussion. By varying the value of the step size h 
students discuss the relevancy of stepsize and the effect on the error. By inserting columns 
containing the actual values of y and the error in the Runge-Kutta solution we can proceed to 
plot these solutions. A typical table containing these results looks like this: 

A B C D E F G H

n h x k1 k2 y
Actual

 y
Absolute

 error
0 0.1 1.0 1 1 0
1 1.1 0.100000 0.121000 1.110500 1.110711 0.000211
2 1.2 0.122155 0.147919 1.245537 1.246077 0.00054
3 1.3 0.149464 0.181350 1.410944 1.41199 0.001046
4 1.4 0.183423 0.223211 1.614261 1.616074 0.001813
5 1.5 0.225997 0.276039 1.865279 1.868246 0.002967
6 1.6 0.279792 0.343211 2.176780 2.181472 0.004692
7 1.7 0.348285 0.429261 2.565553 2.572813 0.00726
8 1.8 0.436144 0.540306 3.053778 3.064854 0.011076
9 1.9 0.549680 0.684657 3.670947 3.687689 0.016743

10 2.0 0.697480 0.873685 4.456529 4.481689 0.02516
↓ ↓ ↓ ↓ ↓ ↓ ↓  
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Using column F and G if available, the iterations using the Euler method the following graph 
is produced: 
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7. Findings 

7.1  From the interviews and questionnaire  

• Sixty percent of students seldom had access to computers during their school years. In 
the cases where students did have occasional access to computers, they were generally 
second hand, not in good working condition and incapable of hosting the latest 
software.  

• Forty three percent of the students currently do not have access to a computer where 
they stay. Considering that these are engineering students in their second year of 
study, you would expect more of them to have computers where they stay. Here too, 
most of them that do have access to computers reported that their machines were 
second hand and the software out of date. 

• Only students with Computer Studies as a school subject had done Excel before 
attending university. None of our students had done Excel before coming to 
university. In recent statistics supplied by the National Education Structure 
Management System (Neims), reported on by Rademeyer [18], it was found that 68% 
of schools in South Africa do not have computers at all. This study was carried out at 
each of the 28 742 schools in the country. It is therefore reasonable to assume that not 
many of the rural schools offer Computer Studies as a subject. 

• Eighty percent felt that the introduction to Excel during the six month Computer 
Skills course was not enough to acquire any real skills. 

7.2  Experiences with Excel 

• The attendance figure for the laboratory sessions was significantly higher than the 
usual lectures. 
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• Students found it easy to understand the relevancy of step size since increasing it to 
0.2 would immediate show up the increase in the absolute error, whilst reducing it 
would decrease the error. 

• Seeing the graphs of both the actual solution as well as the Euler and RK solution 
helped students to ‘see’ how Runge-Kutta improved on the Euler method. 

• After the initial difficulties of entering the formulae into the cells, students fared much 
better by the second and third practical session. 

• Those students doing computer system engineering were markedly more comfortable 
using Excel than those doing other engineering courses. 

• Students interacted during the practical sessions – stronger students assisting the 
weaker ones. 

• It was evident that students enjoyed the sessions. Despite the inability of the students 
to access and use Excel, they displayed an encouraging eagerness to use and learn 
new technology. 

8. Conclusion 

This study was done to address the problem of the “digital divide” in a meaningful 
way, but more needs to be done to make a paradigm shift from mathematics as a talk and 
chalk subject to one that fully incorporates technology. For an institution constantly 
struggling with financial resources, turning to Excel instead of the more accepted 
mathematical packages makes it possible for all students to have easy access. They also do 
not need any prior programming skills in order to master the basics of Excel within a few 
hours.  

The age old question of “why are we doing this?” is better addressed when students can “see” 
the results of solving differential equations. All the students interviewed were interested in 
doing more mathematics using Excel and felt that the learning experience was enjoyable. We 
have shown that meaningful use of technology is possible despite the digital divide. In only a 
few practical sessions the technological skills of the students increased and in so doing we 
have contributed to advancing the technology prowess of students at a university of 
technology as far as mathematics is concerned.  
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The experience of Australian mathematics and statistics 
undergraduate students  
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In the current Australian higher education context of high competition for students and steady decline in the 
enrolments in the basic sciences in general, improving the experience of mathematics and statistics 
undergraduate students is of strategic importance. This paper attempts to gain an insight into the quality of the 
experience of mathematics and statistics students and graduates in Australia. The analysis is made in the context 
of science teaching and courses, and is based on data from subject evaluations carried out at a traditional 
university and the Course Experience Questionnaire completed by bachelor graduates.  The analysis highlights 
three areas that require greater attention, namely good teaching practice, social environment and generic 
graduate qualities.  

Keywords: Student experience, student evaluation, graduates evaluation 

1. Introduction 

In recent years a greater focus has been placed on improving the experience of undergraduate 
students. In Australia, data collected from student surveys are now used to rank universities 
on their teaching performance. These rankings not only influence the student choice of 
university, but also provide access to additional significant funds. The Course Experience 
Questionnaire (CEQ) attempts to measure the experience of the bachelor graduates [1], and 
data from this survey contribute substantially to the Learning and Teaching Performance 
Fund formula [2]. Universities have responded to these external pressures by introducing 
institutional-wide mechanisms and programs for monitoring and improving the student 
experience while still enrolled.  

Despite the large amount of data now available, to date no analysis has been made of what is 
the experience of mathematics and statistics students and graduates. Is it better or worse than 
that of other students and graduates? Are mathematical sciences students generally happy 
with what they get? Are there particular aspects of that experience that warrant special 
attention? These questions are timely and highly relevant given the state of mathematical 
sciences in Australia, where the pattern of declining enrolments in the basic sciences 
(mathematics, physics, chemistry) over the last fifteen to twenty years pose a cause for 
concern. While the number of science enrolments at university level roughly doubled since 
1989, there was a decline of about 30% of full time students undertaking mathematics and 
statistics as a major study [3].  The recently completed review of Mathematical Sciences 
research in Australia confirms the seriousness of this critical decline, by highlighting that 
over the last decade mathematical sciences departments in the smaller universities have 
disappeared, and the number of permanent staff in the mathematical sciences departments of 
the large traditional universities fell by a third [4].  

This paper attempts to look at two sets of data currently available to gain an insight into the 
experience of mathematics and statistics students and graduates over the last few years. The 
investigation tries to establish the best and worst aspects of the experience of mathematics 
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and statistics students, and whether this experience is any different to the experience of other 
science students. The first set of data relates to the experience of undergraduate students as 
expressed through the regular subject evaluations at Monash University. The second set 
concerns the experience of bachelor graduates from all Australian universities as expressed a 
few months after graduation through the Course Experience Questionnaire. Each of these sets 
of data is analyzed separately, and in both cases a comparison is made between the 
mathematics and statistics group and the group that comprises all other sciences. 

2. Mathematical sciences student satisfaction at Monash University 

2.1 The evaluations 

Since 2005 Monash University has been conducting a systematic evaluation of all subjects 
offered across the university using a common instrument [5]. The evaluation instrument 
consists of 8 common university items, up to ten faculty-specific items and two open ended 
items; the quantitative items of this instrument are included in Table 1. Students rate each 
statements in a Likert scale from 1 to 5 with 1=’strongly disagree’, 2=’disagree’, 3=’neutral’, 
4=’agree’, and 5=’strongly agree’.  

 

Evaluation items Short version 

*The learning objectives of this unit were made clear to me Clear objectives 

*The unit enabled me to achieve the learning objectives Subject design 

The material in this unit is presented at an appropriate level Appropriate level 

The organisation and progression of the topics covered was  
coherent 

Organisation/progression

The criteria for the assessment tasks were clear Assessment criteria 

Most of the material covered in this unit was either - new to me, or it 
was presented in more depth than in previous studies 

New material 

*I received constructive feedback on my work Constructive feedback 

*The feedback I received was provided in time to help me improve Timely feedback 

*The overall amount of work required of me for this unit was 
appropriate 

Workload 

*I found the unit to be intellectually stimulating Intellectually stimulating 

*I found the resources provided for the unit to be helpful Helpful resources 

The lectures helped me achieve the unit learning objectives Lectures helpful 

The tutorials/practical classes helped me achieve the unit learning 
objectives 

Tutorial helpful 

The lecturing staff motivated me to learn in the unit Motivation: Lecturers 

The tutors/demonstrators helped me learn in the unit Motivation: tutors 

Access to individual assistance (either face-to-face or online) was 
adequate 

Individual assistance 

*Overall I was satisfied with the quality of this unit Overall satisfaction 

 

Table 1: Quantitative items of the Faculty of Science evaluation instrument. (*) indicates 
university-wide items. 
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2.2. Findings 

There is now sufficient aggregate data to make meaningful comparisons between the 
satisfaction level of students who evaluated mathematics and statistics subjects and those who 
evaluated subjects that belong to other areas of science. The data for four consecutive 
semesters (from semester 2 2005 to semester 1 2007) is summarised in table 2 and figure 1. 
The category ‘mathematics’ includes all evaluation data for mathematics and statistics 
subjects taught towards the Bachelor of Science. (It does not include specialist applied 
mathematics subjects in the areas of atmospheric science and astrophysics taught by the 
School of Mathematical Sciences, nor service mathematics subjects to other non-science 
disciplines such as engineering or business). Students enrol in these ‘mathematics’ subjects 
for the purpose of meeting the Bachelor of Science breadth requirement, or to complete a 
major or a minor in mathematics or statistics. The category  ‘other sciences’ includes all other 
subjects taught towards the Bachelor of Science, including biological sciences, biomedical 
sciences, chemistry, geosciences and physics. The overall response rate for all science 
subjects over this period of time was 57%. 

 

 
Mathematics  

n=2806 

Other sciences 
n=20,836  

Evaluation item  mean sd mean sd p-value 

Clear objectives 3.759 0.865 3.909 0.802 0.000

Subject design 3.720 0.898 3.818 0.798 0.000

Appropriate level 3.795 0.879 3.859 0.818 0.000

Organisation/progression 3.706 0.987 3.793 0.889 0.000

Assessment criteria 3.780 0.922 3.744 0.918 0.028

New material 4.032 0.887 4.014 0.859 0.159

Constructive feedback 3.663 0.998 3.550 1.028 0.000

Timely feedback 3.703 0.983 3.494 1.047 0.000

Workload 3.840 0.885 3.745 0.926 0.000

Intellectually stimulating 3.718 1.032 3.816 0.964 0.000

Helpful resources  3.543 1.036 3.716 0.911 0.000

Lectures Helpful 3.591 1.123 3.771 0.918 0.000

Tutorial helpful 3.950 1.009 3.825 0.966 0.000

Motivation: Lecturers 3.552 1.096 3.661 0.986 0.000

Motivation: tutors 3.938 0.980 3.883 0.934 0.003

Individual assistance 3.813 0.951 3.746 0.950 0.000

Overall satisfaction 3.662 1.023 3.767 0.937 0.000

Table 2: Aggregated 2005 (semester 2), 2006 (semesters 1 and 2) and 2007 (semester 1) 
results of science subject evaluations at Monash University. Significant greater satisfaction 

appears in bold. 
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The summaries in table 2 and figure 1 show that there are significant differences for all but 
one evaluation item between the satisfaction of mathematics and statistics students and the 
students undertaking other sciences. The overall satisfaction item is a good indicator of the 
student satisfaction in general, and the data show that at Monash University, the overall 
satisfaction is lower for mathematics students.  

However, although ‘other sciences’ students are overall happier than ‘mathematics’ students, 
this is not true for every single aspect of their subject experience. Mathematics and statistics 
students have higher levels of satisfaction than other sciences students in the areas of 
feedback, assessment criteria, tutorials and access to individual assistance. On the other hand, 
the opposite occurs in the areas of clear objectives, subject design, organization and 
progression, subject resources, intellectual stimulation and lectures. Furthermore, the most 
problematic aspects for mathematics and statistics students are appropriate resources and 
lectures, while for other science students the lowest ranked aspects are the effectiveness and 
timeliness of feedback.   

It is interesting to note that the teaching format gives both the higher and the lower 
satisfaction to mathematics and statistics students.  The effectiveness of lectures and the 
motivation from lecturers show two of the three lowest means, while tutorials and motivation 
from tutors correspond to the highest means. This is not the case for the ‘other sciences’ 
group, who also rate tutorials and practicals highly, but value the lectures more than 
mathematics and statistics students.   This result is not surprising given that the only way to 
learn mathematics is by doing mathematics and that tutorials are usually structured around 
problem sets and other student centred activities.  

These findings give food for thought and provide for mathematics and others sciences 
teaching staff at Monash an opportunity to learn from each other’s successes.  
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Figure 1: Aggregated 2005 (semester 2), 2006 (semesters 1 and 2) and 2007 (semester1)  

results of science subject evaluations at Monash University 
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3. Mathematics and statistics student satisfaction in Australia 

3.1 The evaluations 

The Course Experience Questionnaire (CEQ) is a national survey administered every year to 
graduates four months after graduation [1].  The survey items are grouped in ten clusters: 
Clear Goals and Standards, Intellectual Stimulation, Learning Resources, Good Teaching, 
Generic Skills, Graduate Qualities, Appropriate Assessment, Appropriate Workload, Student 
Support, and Learning Community (see appendix 1 for the evaluation items contributing to 
each cluster). The survey also includes an overall satisfaction item.  

As with the Monash survey, graduates were asked to rate each of the item statements on a 
scale from 1 to 5 with 1=’strongly disagree’ and 5=’strongly agree’. Due to the methodology 
used it is difficult to establish the precise response rate, and this varies by cluster with notable 
differences between the clusters that are used for the national ranking (Good Teaching, 
Generic Skills, and Overall Satisfaction) and all other clusters.   However, comparison to 
national data on discipline graduates indicates that the number of graduate responses to the 
three main clusters represents between 50 and 60% of those who graduated between 2002 and 
2006.  

Since 2005 the clusters of Good Teaching and Generic Skills and the Overall Satisfaction 
item have been used as indicators for the national Learning and Teaching Performance Fund 
rankings of Australian Universities.   

3.2. Findings 

The summaries for the aggregated data covering the 2002–2006 period appear in table 
3 and figure 2.  The categorization of the groups ‘mathematics’ and  ‘other sciences’ was 
made on the basis of the area of specialization indicated by the respondents. These summaries 
hence reflect the level of satisfaction of graduates who majored in a science area of study, 
and hence it does not include all students who undertook at least one  mathematics or 
statistics subject as part of the (science or other) program of study. For each of the ten 
clusters above the percentage satisfaction indicates the percentage of students who answered 
the majority of the items in the cluster and have an overall mean of 3.5 or above for these 
items. The Overall Satisfaction statistics corresponds to the percentage of students who 
indicated that they either agree or strongly agree to the statement ‘Overall I was satisfied with 
the quality of this course’.   

These summaries show that there is no significant difference between the overall satisfaction 
of the graduates who completed a mathematics or statistics major and those who specialized 
in another area of science. The two cohorts also agreed that the university provided them with 
an intellectually stimulating experience; in fact it is pleasing to see that this was the aspect 
that attracted the highest level of satisfaction, with percentages above 80.  

Despite this general similarity, there are differences between the two groups that are worth 
noting. On the one hand, the ‘mathematics’ group is more satisfied with good teaching, 
assessment, clear goals and standards, and workload. However, their level of satisfaction is 
not very high. In the area of Good Teaching and Clear Goals and Standards, only about 60% 
of the respondents who graduated with a mathematics or statistics major left the university 
with a recollection of a positive experience in the classroom, and with the feedback and 
support they received. Similarly, only 55% left with the impression that the assessment 
practices were appropriate; but it must be noted that the evaluation items contributing to this 
cluster are somewhat superficial and do not attempt to cover the whole range of aspects 
related to assessment, and focus only on whether assessment reflected students’ 
understanding rather that their capacity to memorize facts. Finally, more than half of the 
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mathematics and statistics graduates believed that the workload required to complete their 
courses was too demanding; even though compared to other science graduates they were less 
dissatisfied with this aspect of their study.  This is not surprising as it is known that today’ 
students are very likely to combine a full time study load with many hours of paid 
employment [6]. 

 
 Mathematics Other sciences  

 
% 

satisfaction n 
% 

satisfaction n p-value 

Clear Goals and 
Standards 60.38% 253 55.77% 3023 0.032

Intellectual Stimulation 81.77% 314 84.50% 4803 0.090

Learning Resources 70.41% 295 68.51% 3713 0.206

Good Teaching  59.46% 1399 56.19% 14225 0.001

Generic Skills 68.10% 1601 74.85% 18950 0.000

Graduate Qualities 72.26% 719 79.20% 10476 0.000

Appropriate Assessment 55.00% 528 50.40% 4278 0.003

Appropriate Workload 42.17% 393 36.25% 2782 0.000

Student Support 75.19% 397 75.36% 5082 0.466

Learning Community 46.18% 326 54.78% 4677 0.000

Overall Satisfaction 75.21% 1769 75.51% 19062 0.375

Table 3: Aggregated 2002-2006 CEQ results for students who graduated with a science 
specialisation. Significant greater satisfaction appears in bold. 
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Figure 2: Aggregated 2002-2006 CEQ results for students who graduated with a science 

specialization. 
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On the other hand, mathematics and statistics graduates were less satisfied with Generic 
Skills, Graduate Qualities and with Learning Community. Only 68% of the mathematics 
graduates believed that their course helped them to develop analytic skills, problem solving 
skills, ability to work in a team, written communication, tackling unfamiliar problems and an 
ability to plan own work, and only 72% graduated with the sense that they have developed 
qualities that will enable them to tackle new situations, pursue new ideas and in general set 
them in the path of life long learning. Furthermore, the Learning Community cluster 
summaries indicate that many science graduates and more than 50% of the mathematics 
graduates respondents left the university feeling that they did not belong to a learning 
community. 

In summary, the CEQ national data suggest that there is still much to do to improve the 
experience of Australian science students in general, and that any development of strategies 
to address the shortcomings would benefit from taking into account the discipline differences 
observed from what graduates are saying through this evaluation instrument.  

4. Final discussion and conclusion 

The aggregate data from the two surveys discussed above sheds some light into the 
experience of Australian mathematics students and graduates, as seen from their perspective. 
The results are not directly comparable as they involve different evaluation instruments, 
different timeframes and a different definition for the ‘mathematics’ group. However, it is 
still worth highlighting the areas that seem to be working well–taken in absolute terms, or 
relative to other sciences–and the areas that require fresh approaches.  

The CEQ gives a picture of the different aspects of the university experience of Australian 
graduates with a specialization in mathematics or statistocs, while the Monash subject 
evaluations provide a more detailed insight into the teaching aspect in the context of this 
particular institution. The Monash experience cannot be directly extrapolated to other 
universities, but given the university’s standing as the largest Australian university and a 
member of the Group of Eight [7], the conclusions may be applicable more widely to other 
traditional universities in Australia or around the world. 

Analysis of the two sets of data highlights that if universities are to attract more students to 
do mathematics and statistics, there are three areas that need to be focused on. Firstly, serious 
thought should be put into improving the student experience with good teaching. In this 
context, good teaching includes interesting and effective explanations in lectures as well as 
helpful feedback and genuine interest in helping students to learn. Monash data suggest that 
the use of the lectures and tutorials format needs to be reconsidered. Lectures seem to be 
working for some students, but students value the tutorials and the interaction with tutors 
much more highly. In fact, this is the aspect of their teaching they are most satisfied with. 
Ironically, in large universities such as Monash, tutorials are usually conducted by 
inexperienced and poorly trained honours and postgraduate students.  

Working in small groups seems to be particularly more important in mathematics teaching, 
and greater efforts should be made to use the small group interactive setting to teach 
mathematics. However, Monash data suggest that there are other aspects that require an 
improved emphasis. An investment must be made in developing and sharing good practices 
in mathematics and statistics teaching across and between the teaching departments, and in 
specialist training of academic and support staff.    

Secondly, mathematical sciences departments should pay greater attention to their students’ 
development not only within but also outside the classroom, and help them feel part of a 
learning community. Student engagement with the university could be fostered in many 
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ways, but for some reason this area does not seem to have been explored widely. Team based 
assessment is a structured way to achieve a greater sense of belonging to a learning 
community. The importance of friendly and welcoming study spaces should not be 
underestimated. Students should be encouraged to participate in and feel welcome at 
departmental activities such as seminars, student barbeques, student camps, mentoring 
programs, and opportunities to interact with honours and postgraduate students. 

Thirdly, more work needs to be done towards ensuring that mathematics and statistics 
students graduate with the confidence that they have a set of generic skills and graduate 
qualities that make them employable as well as ready for further studies.  Although 
academics are strongly divided on the question whether it is the role of universities to 
develop skills sought by employers [8, 9, 10, 11], it is known that many prospective students 
shy away from mathematics because they fail to see clear career prospects.  Departments of 
mathematics need to strengthen the message that a mathematics graduate is highly 
employable, and must place a greater emphasis on increasing awareness of the skills they 
learned by studying mathematics, and on addressing the gaps. A good starting point could be 
the graduate profiles developed in the United Kingdom  [12]. 

Finally, it is hoped that the analysis of the data presented in this paper will provide both the 
background for further investigations on how mathematics students rate their undergraduate 
experience, and a stimulus for rethinking the teaching programs and the learning environment 
offered to these students. 
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Appendix 1 

Course Experience Questionnaire clusters 

Generic Skills 

• The course helped me develop my ability to work as a team member 

• The course sharpened my analytic skills 

• The course developed my problem solving skills 

• The course improved my skills in written communication 

• As a result of my course, I feel confident about tackling unfamiliar problems 

• My course helped me to develop the ability to plan my own work 

Clear Goals and Standards 

• It was always easy to know the standard of work expected 

• I usually had a clear idea of where I was going and what was expected of me in this course 

• It was often hard to discover what was expected of me in this course (scale reversed before scale 
calculation) 

• Staff made it clear right from the start what they expected from students. 

Appropriate Workload cluster 

• I was generally given enough time to understand the things I had to learn 

• The sheer volume of work to be got through in this course meant it couldn't be all thoroughly 
comprehended (scale reversed before calculation) 

• The workload was too heavy (scale reversed before calculation) 

• There was a lot of pressure on me as a student in this course (scale reversed before calculation) 

Appropriate Assessment  

• To do well in this course all you really needed was a good memory (scale reversed before scale calculation) 

• The staff seemed more interested in testing what I had memorized than what I had understood (scale 
reversed before scale calculation) 

• Too many staff asked me questions just about facts (scale reversed before scale calculation) 

Intellectual Motivation  

• I found my studies intellectually stimulating 

• I found the course motivating 

• Overall, my university experience was worthwhile 

• The course has stimulated my interest in the field of study 

Student Support  
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• I was able to access information technology resources when I needed them 

• Relevant learning resources were accessible when I needed them 

• Health, welfare and counseling services met my requirements 

• The library services were readily accessible 

• I was satisfied with the course and careers advice provided 

Graduate Qualities  

• The course provided me with a broad overview of my field of knowledge 

• The course developed my confidence to investigate new ideas 

• University stimulated my enthusiasm for further learning 

• I learned to apply principles from this course to new situations 

• I consider what I learned valuable for my future 

• My university experience encouraged me to value perspectives other than my own 

Learning Resources  

• The library resources were appropriate for my needs 

• The study materials were clear and concise 

• It was made clear what resources were available to help me learn 

• Course materials were relevant and up to date 

• Where it was used, the information technology in teaching and learning was effective 

Learning Community  

• I felt part of a group of students and staff committed to learning 

• Students' ideas and suggestions were used during the course 

• I learned to explore ideas confidently with other people 

• I felt I belonged to the university community 

• I was able to explore academic interests with staff and students 
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Inspiring mathematical thinking by processing a digital 
image using a spreadsheet 

JEFF WALDOCK* 

Sheffield Hallam University, UK 

 

Abstract 

 

It is very well-known that student motivation can be enhanced by the use of relevant and 
familiar examples, contextualising theory and providing illustrations of areas in which it can 
be applied.  This is particularly true of mathematics in which abstract theory can, for some 
students, be very de-motivational. 

This paper is concerned with the use of digital images to illustrate mathematical concepts.  
Many (or most) students are familiar with the ways in which images captured by digital 
cameras can be post-processed, but are perhaps unaware that this requires a wide range of 
mathematics.  Simple addition or subtraction is used to alter the image brightness; contrast 
involves a linear mapping of the pixel values;  blurring involves averaging; sharpening 
requires convolution with, for example, a Laplacian filter.  The are many, many more 
examples - it is perhaps surprising that almost any level of mathematics, from elementary to 
postgraduate, can find an area of application in digital image processing. 

To assist students to implement these mathematical ideas with their own digital images, the 
author has written custom software, in the form of an add-in for Microsoft Excel.  When 
loaded, this add-in allows students to import images. It decodes the individual image pixel 
values into three worksheets, one for each of the constituent red, green and blue components.  
Students can then process these values, using their knowledge of Excel functions and/or 
Visual Basic, to implement the mathematical techniques necessary to achieve the desired 
effect.  The add-in then provides a way to regenerate a new jpeg image from these data. 

This presentation will demonstrate the software, illustrate a range of mathematical techniques 
that can be carried out, and describe the experiences of a group of final year undergraduate 
students of mathematics who have used it here at SHU. 

 

                                                 
* Email: J.A.Waldock@shu.ac.uk 
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The work of the SEFI Mathematics Working Group 

 

MICHAEL BARRY†* and MARIE DEMLOVA†† 

†University of Bristol, England 

††Czech Technical University, Czech Republic 

 

The paper describes the work and activities of the SEFI Mathematics Working Group. A group of academics 
from European universities, it advises upon the teaching of mathematics to engineering students and the 
development of the curriculum. Its current focus is engineering mathematics education within Bachelors and 
Masters Degree programmes following the Bologna Agreement, and examining the highly varied forms of 
assessment across institutions and countries.     

Keywords: Mathematics; Engineering; Education; Curriculum. AMS Subject Classification: 97B10; 97B40; 
97B70; 97C40 

1. Introduction 

 The European Society for Engineering Education SEFI (Société Européenne pour 
la Formation des Ingenieurs) was established in Brussels in 1973 to monitor the formation of 
professional engineers within European institutions. It holds an annual conference but most 
of its work is undertaken by working groups dedicated to specific needs. The Mathematics 
Working Group (SEFI-MWG) was set up in 1982, initially drawing delegates from post-war 
Western Europe but from 1990 nearly all countries from Finisterre to the Urals came to be 
represented. Working 3-day seminars are held at approximately two-year intervals to progress 
the Group’s work forward and a smaller executive sub-committee called the Steering 
Committee, meeting more regularly, coordinates the efforts meantime.  

The SEFI-MWG was set up with the following aims: 

• To provide a forum for the exchange of views and ideas among those interested in 
engineering mathematics 

• To promote a fuller understanding of the role of mathematics in the engineering 
curriculum, and its relevance to industrial needs 

• To foster cooperation in the development of courses and support material 

• To recognise and promote the role of mathematics in the continuing education of 
engineers in collaboration with industry 

To this one needs to add the following tasks, achievements and subsequent roles of the SEFI-
MWG as these have evolved over the Group’s 25-year existence: 

                                                 
* Corresponding author. Email: Mike.Barry@bristol.ac.uk 
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• The production of an advisory core curriculum in mathematics for the formation of 
the professional engineer within universities in the developed world (Curricula 
published in 1992/2002)    

 

• The provision of an international forum for the exchange and development of ideas 
and practice in the teaching of mathematics to engineers  

• The establishment of international initiatives to compare and contrast different 
practices in converting teaching into effective learning (Assessment Project) 

• The monitoring and adaptation of widely varying curricular practice into a common 
internationally accepted form  (Bologna Agreement)   

2. The Evolution of the Core Curriculum 

The Seminars in the 1980s enabled the widely different practices in engineer 
formation across Western Europe to be fully aired and possibly for the first time, to be 
mutually understood. There is general agreement that the specialisations of engineering; e.g. 
aeronautical, electrical, mechanical, marine, nuclear, etc have a distinct meaning to members 
of the public in the developed world but if one asked what a fully qualified professional 
engineer actually might do on a day-to-day basis there is a much less clear view than there 
might be over the duties of other professionals such as those in medicine or the law. Also, in 
the scientific community in many continental European countries some applied 
mathematicians and physicists are very often termed engineers. This has meant that in 
specifying a core curriculum of mathematical study the needs of more mathematically 
orientated professionals has been an issue.  

Beginning with the 5th Seminar held in Plymouth, UK in 1988, sub-working groups of the 
SEFI-MWG set about defining an advisory curriculum of flexible length ranging from 220 to 
320 hours aimed at appropriate institutions and countries. This was published in English, 
French and German by SEFI in 1992 [1]. The content comprised: 

• Analysis and Calculus 

• Linear Algebra 

• Discrete Mathematics 

• Probability and Statistics  

in the proportions of about one half for the analysis and calculus and about one sixth each for 
the others, together with a proviso that numerical methods be infused within the curriculum. 
Prerequisite mathematical study, i.e. highschool mathematics, was specified and overlying 
the curriculum elective study in appropriate areas of mathematics was detailed for the 
differing specialisations of engineer.  Introducing the curriculum was a discussion and 
commentary which recognised that so-called ‘high technology’ is really a mathematical 
technology and noted that advances in computation would limit the validity of the document 
to a 10-year lifespan.  

A revised core curriculum document was published by SEFI in 2002 [2]. In many respects 
this retained the main features of the earlier document but the concept of the Core as well as 
the above four components was extended into the underlying and overlying material. New 
was the inclusion of Geometry as a specific topic and the special emphasis placed upon 
student learning outcomes. Also teaching practice in Central and Eastern Europe received 
more importance. The prerequisites are now termed Core Zero; the core itself is split into two 
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hierarchical tiers, Core One and Core Two and the electives called Core Three. During the 
1990s serious concern over the mathematical fitness and changing background of new entry 
engineering students emerged, firstly in the United Kingdom, but later on in many other 
countries. The underlying reasons appear to be cultural as well as educational but the impact 
on the curriculum has been that Core Zero material has encroached upon university 
mathematics. Also, the time allocated to teaching mathematics, i.e. the Core itself, was 
coming under pressure in many institutions and countries as engineering programmes 
evolved.  

3. The Evolving Focus of the Seminars 

 The 6th Seminar in Balatonfured, Hungary in 1991 brought in Central and Eastern 
European delegates and further exchanges of the wide disposition in engineering mathematics 
education. Later in the 1990s focus came in special out-of-sequence seminars on areas of 
need, notably statistics at the Prague Seminar in 1994 and geometry at the Bratislava Seminar 
in 1997. By the 9th Seminar in Helsinki, Finland in 1998 the decline in entry competency was 
widely reported from within Europe and beyond. Emphasis too went to considering the study 
of the Core as the main component of lifelong learning. The widespread use of computer 
technology was emerging as an issue by this time, and whilst welcome in its role in the 
removal of drudgery in calculations delegates reported that considerable care was needed not 
to trivialise its use, notably with computer algebra. Interest too was taken in looking forward 
to a time when computational capacity would become almost optimal and whether or not it 
would be possible to define an irreducible core of mathematical knowledge that an engineer 
would need to have irrespective of computational advances. From the mid 1990s and onwards 
delegates came from outside Europe, notably from Argentina, Australia and the USA. The 
same themes were revisited at the 10th and 11th Seminars in Miskolc, Hungary in 2000 [3], 
and Gothenburg, Sweden in 2002 [4]. With learning outcomes becoming paramount 
emphasis was moving to assessment, a theme that would play a major part in the subsequent 
and present activities of the SEFI-MWG.   

4. Recent Activities 

The SEFI-MWG has a reputation for doing rather than talking and its early seminars 
in the 1980s placed strong emphasis on sub-working group discussions, such as the ones on 
analysis and calculus, discrete mathematics etc that led to the four main components of the 
Core Curriculum. Many of these sub-working groups made considerable progress, for 
example by writing questionnaires, and produced valuable interim reports that were carefully 
distilled as input into larger reports such as the Core Curricula. In the early 1990s there was a 
move towards more presented papers mainly to draw in Eastern European delegates who had 
to present a paper in order to receive financial support to attend. From 2000 onwards a way 
was found to move the balance back to the earlier model, i.e. round table working.  Activities 
within the SEFI-MWG are currently concentrated on the Bologna Agreement and the 
Assessment Project and meanwhile valuable debates have taken place at the most recent 
seminars, namely the 12th Seminar in Vienna, Austria in 2004 [5], and the 13th Seminar at 
Kongsberg, Norway in 2006 [6]. 

4.1 The Bologna Agreement  

 The Bologna Agreement calls for Bachelor programmes of c.180 European Credits 
(ECTS), taken over about 3 years or 6/7 semesters, followed by c.120 ECTS up to masters 
level, or about 2 years or 4 semesters.  

The decision to opt for this was dictated by the aim of transference in academic study 
between European institutions. This might be good in principle but might be inapplicable and 
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inconsistent with the programmes that some institutions offer. However other institutions are 
moving this way and some countries such as Belgium are more committed than others. SEFI-
MWG delegates however are worried about what Bachelor qualifications might come to 
mean noting that there could be a wide variety of levels and that mathematics might be put 
under pressure and reduced. It would also risk being undermined at the lower end of the 
curriculum with an increasing amount of ‘levelling-up’ Core Zero material. Some however 
have commented that Bologna could work if given time to bed in but there may be a need to 
distinguish between those Bachelor programmes that naturally lead on to Master programmes 
and research and others that constitute an exit pathway, i.e. an end of formal academic study. 

Delegates were asked to go away from the 13th Seminar and address the mathematical 
curriculum requirements of a Bachelor programme. There are two considerations to be 
accounted for initially. Firstly, as the start point level of mathematical study seems to get 
lower with every passing year, this would need to be rationalised in terms of Core Zero and 
Core One of the Core Curriculum. Also, the endpoint of study would come before the end of 
Core Two: this too would need to be rationalised in terms of the type of programme and 
engineering discipline. What the Group might do, is define curricula for Bachelor Type A, 
(i.e. proceeding to masters) and Bachelor Type B (terminating). Less academically able 
students might go for Type B and it might be more open as to the start level of what such a 
mathematics programme should be. 

4.2 The Assessment Project 

 In 2005 the SEFI-MWG began looking into the many different assessment models 
that operate across the many institutions and countries in Europe.  The written examination 
appears internationally to be a well-tried, tested, and administratively proven model for 
assessment in many subjects. The UK prefers 3-hour exams whilst other countries have 
examinations up to 5 hours (Norway) or as little as 1.5 hours, perhaps supported by an oral 
examination (Central Europe).  In many institutions large numbers of students dictate that 
oral exams are unaffordable at lower undergraduate level in terms of time and effort, as are 
the assessment, trustworthiness and reliability of coursework or take-away assignments. 
There is however much respect for assessment via assignment for project and other work at 
higher undergraduate levels. Learning outcomes spell out precisely what the student should 
be able to do having covered a particular element in a unit though the final examination 
cannot and maybe should not necessarily test all of these.  Rather more specific learning 
outcomes can be assessed by formative testing. Delegates in Kongsberg spoke about the use 
of computerised tests to reinforce learning and gave excellent examples of the assessment of 
concepts with multiple-choice questions. There is a strong feeling that such precision testing 
be used carefully and proportionately in the formative phase and that students have full 
powers of expression and explanation in their final summative examination. Whatever form 
of assessment is adopted all assessors agree that the main aim of assessment is to measure the 
ability of students to communicate their mathematics most efficiently and effectively. 

The next stage for the SEFI-MWG Assessment Project is to compare actual assessments from 
different countries and institutions across Europe.  This is expected to start with a focus on 
first year calculus and linear algebra in programmes for engineers. 

4.3 Future Investigations 

In addition to discussing Assessment and the Bologna Agreement delegates at the 
recent seminars have also been looking at the following: 

4.3.1 The key issues in teaching engineering mathematics for understanding. Students 
need to understand mathematics as a language of scientific communication and the 
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understanding needs to be robust and versatile enough to cope with the unpredictable 
challenges of being a practising engineer. Good teaching facilitates learning, irons out 
misconception, and enables students of diverse mathematical background to reach a common 
minimal level of understanding. The goals of students are often short-term for a subject such 
as mathematics and maybe assessment orientated, i.e. they seek just enough knowledge and 
guidance to pass a specific examination. They can thus risk developing only a surface 
learning of the subject and need to deepen this by dealing with appropriately chosen 
mathematical challenges within an engineering context. 

4.3.2 Innovative ways of teaching mathematics. Freshers can experience a considerable 
culture shock when reaching university and finding themselves in large classes for lectures. 
Engineering mathematics is delivered in this way in many institutions though some monitor 
the attendance, e.g. by using swipe cards coupled to following up and counselling poor 
attendees. All participating institutions in the SEFI-MWG use Information Technology (IT) 
to some extent and have moved forward from the view that its introduction is to reduce staff 
involvement. Rather IT, and Web-based technology have enhanced the quality of delivery, 
distance learning and power of communication. A new level of support has emerged in an 
environment of popular culture where e/mail is the most common form of academic 
communication. There is some evidence however that ill-considered computer aided teaching 
and assessment can cause frustration and anxiety so care needs to be taken as to measuring 
carefully the volume and quality of electronically available material. 

5. Forward to the 14th Seminar in Loughborough, UK in April 2008 

The next Seminar is due to take place at Loughborough University, United Kingdom 
on 6th to 9th April 2008. It will be an event held jointly with the Institute of Mathematics and 
its Applications (IMA) that will be holding its 6th Conference on the Mathematical Education 
of Engineers. The IMA conferences, held since 1994, have paralleled the SEFI-MWG 
seminars in many respects whilst focusing on UK related issues and in particular setting in 
train reports and measures to counterbalance the declining mathematical preparedness of 
engineering students. It promises to be an interesting and varied event.  
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An entrance system has been initiated at the engineering faculty with the objective of decreasing the dropout 
rate of students in early stage of their careers.  This system consists of the Bridging Course (30 days duration) 
and a program of Complementary Foundation (4 months duration). 

The first part is an intensive course of required high school mathematics material for the course.  The students 
that do not pass the initial evaluation must complete the program of Complementary Foundation. 

This consists of two Modules: Mathematics and Study Techniques both oral and written works.  These modules 
are designed to assist students with difficulties such as reasoning in a logical manner, lack of high school 
mathematics, mistakes made in reading and comprehension, study techniques, absence of study habits, etc…  It 
was observed that to help students adapt to university life, they should be able to solve problems in an 
independent manner.  A skill not taught at school but essential at university is self-management of time and 
problems. 
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1 Introduction 

Situation 

Of great concern to the engineering faculty, are the high dropout rate and the large 
number of students failing subjects in first year or who discontinue their studies. How do we 
retain these students in the university system? The dropout and failure rates are high in the 
first two years; this may largely be attributed to secondary school not developing study skills 
for an easy transition to university education [1]. 

This problem is not ignored by first year university educators and has been confirmed by 
numerous investigations on this subject, for example, an investigation carried out in the Basic 
Common Cycle (BCC) of the University of Buenos Aires (UBA), where lack of study skills 
are attributed to secondary school, as the author states that 86% of interviewed teachers state 
that students are unprepared for university study and 70% of students agreed that the 
preparation and development was "not enough" and "insufficient”. Due to this shortfall in the 
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preparation of students, the order of learning subject is altered and often this leads to a 
restructuring of the university programme of study [2] 

 

Problem of the first year student 

To adapt to university life it is necessary to appreciate a student's point of view, in relation to 
demands and characteristics of social aspect.  University is a place of learning, where 
students also need to learn to be a student. This learning requires adapting to new styles, 
teachers, and different institutional operations.  So who are these people who are not able to 
learn and therefore don't stay at the institution as a student and in most of the cases, to 
abandon University or to remain a perpetual (failing) student of the university. 

Studying at university is very different from the study culture in the high school and this 
difference produces problems.  An example is the difficulty that the students have in reading 
and interpretation of concepts using the specific texts of the subject and the tendency to 
appeal to concise notes and simplistic explanations of the concepts. That is to say they avoid 
the use of the book sources, why?   In student culture notes and portfolios replace the books. 

At the university, students need to take control of the time dedicated to learning and integrate 
their own strategies to aid learning with illustrations, summaries, previous organisers, 
conceptual maps, textual structures, etc 

To all of this, add problems associated when students are asked to write or talk on topics, as 
well as the absence of tools or study techniques, they need strategies of how to comprehend.  

So if students recognise their difficulties in understanding, they will need to find some 
strategy that allows them to understand the study material.  The reader is the one that should 
decide whether the observed difficulty is solved or not, and this decision has to do with the 
reason that he/she has for the task. If he/she decides to solve the lack of understanding he/she 
will choose some of the following options; to keep the current problem in mind hoping to 
clarify it with the reading of the text or to undertake an action immediately, it can stop and 
think of the reading, go back or jump ahead in the text, consult a dictionary, another 
bibliography, professor, etc… [3] 

With regard to the retention strategies, there are diverse measures that can help them 
remember better. In reference to semantic memory, that is meanings, it supposes that the 
retention is richer and more durable; the more relationships are connected with the concepts. 
This supposes that different practices allow building of new relationships, as well as how 
much control of understanding and conscience are remembered of what has been studied. We 
make reference to the meta-memory, that is to say, the knowledge that we have of our 
memory, it’s limitations, resources, what allows us to analyse and to elaborate strategies to 
remember well: to take conscience of the problems and to look for possible solutions, to 
apply them and to decide which is the most beneficial according to each study situation. 

2. Entrance system to the Engineering faculty 

There have been many different entrance methods into the Engineering faculty over 
the years. Before the current system, all the students entered together, first year classes would 
be have numbers between 1000 and 1200 students though after three months the class size 
may be halved due to dropouts even before the first tests. 

In the year 2005 an entrance system was implemented in the Engineering faculty that has the 
general objective of preventing this rate of departure of students so early.  It was proposed in 
March to run a Bridging Course (lasting 30 days) and of the programme of complementary 



 187

Foundation (duration 4 months) whose contents have been established by the Academic 
Council of the faculty. 

3. Bridging course 

3.1 Organisation 
The Bridging Course is a prerequisite for all the courses of the faculty; it is conducted 

in February- March.  The aim is to develop average knowledge of Mathematics and students 
must pass this course in order to proceed to first year. 

The students have a note of activities to work in the classroom, and they must attend to 
theoretical practical daily classes of three hours of duration.  In this course the following 
contents are developed [4]:  

Numeric groups. Intervals.  Operations 

Real function. Lineal function. Quadratic function 

Algebraic expressions. Theorem of the Rest. Divisibility. Operations. Factoring 

System of two lineal equations with two unknown quantities. Application problems. 

Trigonometry: Systems of mensuration of angles. Trigonometric Work. Trigonometric 
identities and equations. Application problems. 

The development of the program activities was coordinated and organized in all the 
commissions.  This course involves two tests at the end of the course.  The students that do 
not pass must complete the programme of Complementary Foundation. 

4. Itinerary of Complementary Formation 

4.1 Organisation 
The programme of Complementary Foundation consists of two Modules: 

Module 1: Mathematics 

Module2:  Study techniques with oral and written expression 

These modules are taught together, and are specifically designed to attempt to correct 
difficulties in the logical reasoning, basic high school mathematics, flaws in reading 
comprehension and in the study techniques, absence of study habits, to mention some, since 
the list is wider.  Since this course lasts four moths it gives the student time and the 
opportunity to really understand and learn the topics.  

Each module is examined and students must pass both modules of the programme.  

The course is repeated in the second semester for students who: 

did not attend or didn’t pass the first semester. 

are studying final year of secondary school. 

graduated secondary school or but have failed to attain university entrance requirements (Law 
24521 of Superior Education). 

The students that pass the Programme here, and fulfil the entrance requirements to the faculty 
will be able to enter the first year next year. It was observed that to help students adapt to 
university life, they should be able to solve problems in an independent manner.  A skill not 
taught at school but essential at university is self management of time and problems. 
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4.2 Mathematics module 
The Mathematical knowledge involves the demonstration of certain skills and abilities 

that will help the integration of new knowledge when passing from one level of learning to 
another. In particular in the transition from secondary school to University is fundamental 
that the key competencies are incorporated into the program [5]. 

In Mathematics the intellectual aptitudes are shown when operating with symbols, 
representations, images, use of languages (colloquial, mathematical, etc.) and include the 
analytic capacities, the creative ones and reflection on the thought processes. The practical 
aptitude or procedural content, correspond to the procedures related with the resolution of 
problems. Some are those that require the application of some algorithm, as in counting, 
calculating, graphing and measuring. Strategies refer to estimating, gathering, organising, 
comparing classifying, and analysing.  There are always debates about what mathematics is 
needed by a high school graduate in order to be fully prepared for challenges and advances of 
technology and science.   How do we prepare students for university life and studies?   

Mathematics in some form or another is required in many disciplines at university level either 
specific mathematical content or the ability to reason logically.  So one of the main objectives 
at primary and secondary level is to teach students how to logically reason and solve new 
situations using previous ideas. Thus effortlessly building new knowledge on this knowledge 
[6,7].  This should be kept in mind when proposing the activities and contents of this module.  

There are 3 practical classes of 2 hours and one theoretical class of 2 hours each week. There 
were three different streams or groups of students, two at morning and one in the afternoon.  

The teaching of this module was organised  into theoretical classes and practical classes 
similar to the format of university 

The assessment process consists of 2 tests, each one with its re evaluation test and at the end 
of the semester there was a further opportunity given to students who failed one of the tests. 
Although the mathematical content was comparable to that in the bridging course, in the 
practical classes different worksheets were used since there was extra time to explore the 
topics more deeply.  For example, a practical on calculator handling in trigonometry was 
included 

4.3 Techniques of study and oral and written expression module 
This module is organised as workshops where the emphasis is on the student to be able to 
acquire information. Some activities are specifically designed to increase the knowledge of 
the students about the written (correction, grammar, adaptation, coherence and cohesion) 
language particularly composition, styles and values of the writing. 

On the other hand, students are encouraged to share their reflections on  writing process, the 
analysis of the different steps it  takes, the blockages encountered by verbalizing their 
feelings in front of their peers. It is equally important that students understand social 
structure, the university institution and the student's place in this institution, than consider just 
the methods and techniques of academic work and practice and manipulate the tools of the 
academic university work [7,8] 

4.3.1 Contents 
The context of the program included:  
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Analysis of text:  Its legibility. The plain language style.. The process of breaking down the 
text. Coherence and cohesion. Paragraphs: definition, more frequent errors. The size of the 
sentence. Punctuation: importance, the hierarchy of the signs. setting in use of the language: 
the exhibition. The application, an administrative necessary gender. [9] 

Society, University and the student: Society and state in modern Argentina. The National 
University of Jujuy. The student commitment. 

Culture, science and profession: scientific knowledge and professional practice. The 
intellectual work: the occupation of thinking [10]. 

Methods and technical of work intellectual: conceptual rationalization and intellectual 
procedures for the study in the university. [11] 

The tools of the intellectual work: reading, notes, summaries, reports, exams, monographs 

5   Development of the entrance system of teaching cycle  2005-2006 

5.1 Inscribed applicant 
In the year 2005 (2006) in the faculty of Engineering of the University of Jujuy had 1137 
(1096) students. The faculty services the following courses: Chemical engineering, Mining 
Engineering, Computer Engineering and Industrial Engineering, Degree in Information 
Technology, Degree in Food Technology, Degree in Geology, Programmer Analyst, 
Biochemistry and Pharmacy through agreement with the National University of Tucumán and 
it also possesses the Common Articulate (CCA) Cycle, first year cycle in all the engineering 
of the five National University of Tucumán, it Jumps, Santiago of the Tideland and 
Catamarca. 

5.2 Bridging course 2005-2006 
The structure of the course was 6 tutorials, 3 in the morning and 3 in the afternoon, and it 
involved 1006 (906) students. 

Each stram had daily classes of 3 hours duration from Monday to Friday, and the students 
had worksheets to develop in class. 

The course lasted 3 weeks and it was run by a tutor.  Two evaluation instances were given for 
this course. 

In the first opportunity to sit the test, 713 (681) students of the 1137 (906) listed were present. 

So at this stage we already observed natural an attrition. In this date first opportunity to sit the 
test, 229 (222) passed, that is,  32,1%. In the second opportunity to sit the test 462 (419) 
students turned up, of whom  125 (225) passed, that is,  27% approximately (51%).  

After each test a schedule was prepared so that students could view their test.   

A pass was awarded to students who obtained at least  50 out of a total of 100 points. In total, 
364 (447) passed. See Table 1 

The students who didn't pass the bridging course continued to study the Programme of 
Complementary  Foundation (TFC).  This TFC program was free for faculty student, but it 
was fee-based for outsiders.  
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6 General observations 

It was observed that students adapted well to the demands of being a university students. This 
was a gradual process; students were doing only two modules which enabled them to adapt 
smoothly and steadily. These conclusions show the benefits experienced by the institution.  

This experience was the result of feedback where: the advice to adopt an entrance system that 
would lower withdrawals and at the same time the bridging course provides the mechanism to 
prepare students for first year university studies. In short, problems, obstacles, and difficulties 
of the first year of study have always been a discussion topic and concern for new students. 
The observations were positive. This system allows the retention of those students that take 
longer to adapt to the transition, and TFC allows this.   There will always be some students 
who can cope with the transition from school to university. Some students, who are quite 
capable, need longer to adapt to university life have a better chance of staying in the system.   
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In this paper challenges and solutions to the mathematical and statistical community when dealing with visual 
impairment are presented. In particular, the focus is on the accessibility of graphically displayed information in 
the field of time series analysis. We illustrate through an example how high resolution Braille can be used to 
visualize two important graphical representations for an observed time series – the time plot and the 
correlogram. It is shown how the time plot and correlogram are used in conjunction with the Phillips-Perron test 
to determine whether the observed series is stationary or non-stationary and, if non-stationary, whether the series 
has a deterministic or stochastic trend. Finally a collection of technological solutions that the first author is using 
in his undergraduate studies and research, are given. 
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EmbosseR (TIGER); Time series analysis; Time plot; Correlogram; Stationarity; Phillips-Perron test 
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1 Technological Innovation 

Technological innovations have greatly impacted upon the mathematical world of the 
visually impaired over the last twenty years. For example, a report in 1983 on a case study in 
the UK, see [1], pointed out these two technological prospects: 

‘Firstly, more sophisticated devices are being developed to convert print-face into electronic 
voice speech...’ 

‘Secondly, means of converting information stored by computer need to be more readily 
available.’ 

Both these and many other challenges have been overcome and are still being refined today. 

The key feature of access technology is communication. Technological innovation should 
therefore not only strive to increase accessibility, but also seek solutions which enable the 
user to be independent. In order to communicate independently, there should exist systems 
for reading, writing and dealing with graphics. Furthermore, it is important that these 
solutions can be interpreted by all members of society, since the undergraduate student will 
probably pursue a professional career – hence the strong emphasis on independence. 

The period of time consumed in order to apply a solution should also be taken into account. 
The transcription of materials into Braille, recording of textbooks and making graphs 
accessible can take up enormous amounts of time, which is not efficient in a productive 
world. 

Another barrier to technological advance is the financial implications incurred by 
implementing a proposed solution.  This has always been a challenge and especially hinders 
development and limits access to technology in developing countries. 
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There are individual challenges, e.g. the visual incapacity of especially those being blind 
from birth, to whom technology might not have an answer, yet...! 

2 Basics of Braille 

Braille was invented by Louis Braille in 1829, originally for soldiers to enable them to read at 
night without the use of light – see [2].  Each Braille cell is a 3×2 matrix which can be 
thought of as [2]: 

‘binary-coded numbers that use filled positions for ones and empty positions for zeroes.’ 

There exist many Braille systems comprising of all 63 combinations of ‘dots’ which form the 
various symbols of the underlying system. The interpretation of the respective symbols 
therefore depends on the system being used. There are for example many different Braille 
systems for mathematics, chemistry and music. In addition, the interpretation of different 
symbols is also language dependent. 

Although Braille enables good access to the Braille user, it is clear that it does not serve as a 
universal communication tool. However, the use of Braille wherever possible for personal use 
is strongly encouraged. 

3 High resolution Braille 

As explained in [3]: 

‘“Normal” Braille standards define the dot spacing within a Braille cell to be between 2.3 and 
2.5 mm, the cell to cell spacing to be 6.0 to 6.2 mm and the dot height to be 0.25 to 0.53 
mm.’ 

Therefore the Braille cell (the six dot blocks) would not be sufficient for creating graphical 
material, since blocks cannot be made more compact or be placed closer to one another 
without re-engineering the structure of the Braille cell. In 1996, Peter Langner developed a 
method to emboss 20 dots per inch, so-called ‘high resolution Braille’, which has inter-cell 
dot spacing of 2.54 mm and inter-cell spacing of 6.25 mm – see again [3]. This technology is 
known as TactIle Graphics EmbosseR (TIGER) and, according to [3]: 

‘... was patented by Oregon State University, licensed to the spin-off company ViewPlus 
Technologies (http://www.ViewPlus.com)...’ – see reference [4]. 

As discussed in [5], it is possible with the TIGER Braille embosser to emboss graphics and 
text from any Windows based application. 

4 Application to time series analysis 

To illustrate the use of the TIGER Braille embosser, we look at a financial time series 
application in which SAS 9.1.3 for Windows is used to plot graphs relating to an observed 
time series. We will use these graphs, together with the Phillips-Perron test, to determine 
whether the series is stationary or non-stationary, and if non-stationary, whether the series has 
a deterministic or stochastic trend. 

A time series is said to be covariance stationary1 if its first two moments, that is, its mean and 
autocovariance function, are both independent of the time period. In effect, a stationary series 

                                                 
1 See [6] or [7] for the difference between covariance (or weak) stationarity and strict 
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will use the term ‘stationarity’ in the paper to refer to ’covariance stationarity’. These texts, 
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has a constant mean and its autocovariances only depend on the lag (or distance) between the 
observations and not on time itself. 

Let nzzz ...,,, 21  denote the n observations of a time series. The time plot of the series is a 
graph of tz  against t for nt ...,,2,1= . The sample autocorrelation function of nzzz ...,,, 21  is 
given by: 
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1  is the sample mean and k is the lag between observations. The correlogram 

is then a plot of kr  against k for ...,2,1,0=k . 

Consider the daily South African Rand – Argentine Peso exchange rate from 2004/03/01 to 
2005/02/28. This series has 255 observations (in effect, 255=n ). The time plot of the series 
given below is obtained using the SAS procedure ‘proc gplot’. 

 
Figure 1 – Time plot of observed series taken from the SAS Graph Window 

The corresponding plot using the TIGER Braille embosser is as follow: 

                                                                                                                                                        
[6] or [7], can also be consulted for more information regarding any other time series 
concepts dealt with in the paper. 
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Figure 2 – Time plot of series as depicted by the TIGER Braille embosser 

It is clear from the time plot that the Rand-Peso exchange rate has a downward trend over 
time. In effect, the mean level of the series decreases over time and hence the series is non-
stationary. 

The correlogram for the Rand-Peso exchange rate is obtained in SAS with ‘proc arima’ and 
given below: 

 
          Correlogram of the Daily Rand-Peso Exchange Rate from 2004-03-01 to 2005-02-28         1 

 

                                       The ARIMA Procedure 

                                      Name of Variable = zt 

                                Mean of Working Series    2.139158 

                                Standard Deviation        0.128086 

                                Number of Observations         255 

 

                                         Autocorrelations 

 

  Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error 

    0      0.016406        1.00000    |                    |********************|             0 

    1      0.015952        0.97229    |                 .  |******************* |      0.062622 

    2      0.015495        0.94445    |                .   |******************* |      0.106471 

    3      0.015077        0.91897    |               .    |******************  |      0.135396 

    4      0.014736        0.89822    |              .     |******************  |      0.157974 

    5      0.014445        0.88044    |             .      |******************  |      0.176871 

    6      0.014089        0.85874    |            .       |*****************   |      0.193296 

    7      0.013695        0.83474    |            .       |*****************   |      0.207719 

    8      0.013225        0.80610    |           .        |****************    |      0.220482 

    9      0.012755        0.77746    |           .        |****************    |      0.231751 

   10      0.012387        0.75502    |          .         |***************     |      0.241763 

   11      0.012059        0.73505    |          .         |***************     |      0.250839 

   12      0.011819        0.72039    |          .         |**************      |      0.259149 

                                  "." marks two standard errors 

Figure 3 – Correlogram of observed series taken from the SAS Output Window 

Note that the output in the SAS Output Window is in terms of text. Therefore the correlogram 
is a ‘text plot’ with the magnitude of each sample autocorrelation depicted using stars, ‘*’. 
The corresponding plot obtained with the TIGER Braille embosser is as follow: 
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Figure 4 – Correlogram of series as depicted by the TIGER Braille embosser 

The correlogram shows that the sample autocorrelations decrease at a very slow rate as the 
lag, k, increases. This is indicative of non-stationarity. 

To determine whether the trend is stochastic or deterministic, the Phillips-Perron test, [8-9], 
can be used. The Phillips-Perron test has three specifications: 

Case 1 (Zero Mean) – to be used if the observed series fluctuates around zero. 

Case 2 (Single Mean) – to be used if the observed series fluctuates around a non-zero mean. 

Case 3 (Trend) – to be used if the observed series has an upward or downward trend. 

Since the Rand-Peso exchange rate has a downward trend – see again Figure 1 (or Figure 2), 
Case 3 is applicable. It is then assumed that the process that generated the series is the 
following AR(1) process: 

 ttt zz ερα ++= −1          (2) 

 

with tε  an independent and identically distributed error (innovation) sequence. The null 
hypothesis, 1:0 =ρH , is tested against the alternative 1:1 <ρH . It follows that under the 
null hypothesis the series is a random walk with drift given by: 

 ttt zz εα ++= −1          (3) 

The random walk with drift is a series with a stochastic trend. 

To perform the Phillips-Perron test, the parameter ρ  is estimated using ordinary least squares 
(OLS) regression. The regression model is given by: 

 ttt ztz ερδα +++= −1         (4) 

Note that a time trend, tδ , is added to the model. Therefore, if the null hypothesis is rejected, 
it is concluded that the series has a deterministic trend. 

One of two test statistics can be used for the Phillips-Perron test: 
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where: 

ρ̂  is the OLS estimate for ρ  

ρσ ˆˆ  is the OLS standard error for ρ̂  
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The test statistic in equation (5) is referred to as a regression coefficient-based test statistic, 
whereas the test statistic in equation (6) is referred to as a studentized test statistic. 

In SAS the Phillips-Perron test is requested with the statement 
‘stationarity=(pp=(0,1,2,3,4))’ in the procedure ‘proc arima’ where, in this example, 

4,3,2,1,0=l  is used. The corresponding SAS output is given in Figure 5. Note that all three 
specifications of the Phillips-Perron test are automatically performed. The user has to pick the 
correct specification based upon the time plot of the series. The Rand-Peso exchange rate has 
a downward trend, so Case 3 (Trend) is applicable.  

The p-values with respect to ρZ  (given under the heading ‘Pr < Rho’) and with respect to τZ  
(given under the heading ‘Pr < Tau’) are all greater than 0.05, so 1:0 =ρH  cannot be rejected 
and we conclude that the trend of the Rand-Peso exchange rate is stochastic. 

 



 197

 

 

 
                                 Phillips-Perron Unit Root Tests 

 

                Type           Lags         Rho    Pr < Rho        Tau    Pr < Tau 

 

                Zero Mean         0     -0.1496      0.6483      -0.73      0.4001 

                                  1     -0.1485      0.6486      -0.75      0.3938 

                                  2     -0.1476      0.6488      -0.76      0.3881 

                                  3     -0.1465      0.6490      -0.78      0.3806 

                                  4     -0.1458      0.6492      -0.79      0.3752 

                Single Mean       0     -5.5192      0.3846      -1.61      0.4741 

                                  1     -5.2782      0.4063      -1.58      0.4934 

                                  2     -5.0833      0.4245      -1.55      0.5094 

                                  3     -4.8454      0.4476      -1.51      0.5293 

                                  4     -4.7052      0.4616      -1.48      0.5412 

                Trend             0    -14.1990      0.2060      -2.70      0.2360 

                                  1    -13.8988      0.2179      -2.68      0.2476 

                                  2    -13.6870      0.2267      -2.66      0.2560 

                                  3    -13.3469      0.2413      -2.62      0.2701 

                                  4    -13.2187      0.2470      -2.61      0.2755 

Figure 5 – Phillips-Perron test for observed series 

5 Various Technologies 

This is by no means an exhaustive list of products and solutions available, and won't 
necessarily fit the individual needs of all the visually impaired.  It is rather a collection of 
solutions that work for the first author.  It is also assumed that computers are readily available 
and that the user is either computer competent or might become competent through training. 

5.1 Screen reading software 

Screen-reading software provides access to a computer in much the same way that a 
computer screen would.  Information that appears on the screen is spoken by the computer. 
The company Freedom Scientific (http://www.freedomscientific.com) offers a product, 
JAWS, which enables Windows users to access their computer.  

5.2 LaTeX 

Communication is vitally important for any scholar or professional. The LaTeX 
system provides a linear way for the visually impaired to engage mathematics, which are 
often spatially arranged.  Since a wide audience makes use of LaTeX, it provides a very 
effective way of reading and writing mathematics. Various tools exist to convert LaTeX to 
and from other formats – see http://www.latex-project.com.  

5.3 Braille translation software 

Braille might not be the best solution to communication, but it provides a solid basis, 
especially in cases where new concepts have to be learned. Duxbury for Windows 
(http://www.duxburysystems.com) provides translation from LaTeX to Braille. 

5.4 MathML 

As stated by [11]: 
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 ‘It provides a much needed foundation for the inclusion of mathematical expressions 
in Web pages.’ 

 

Many mathematical texts are also created using MS Word and MathType 
(http://www.dessci.com). Using MathType these documents can be exported as MathML files 
and accessed by MathPlayer (from the same company).  The mathematics is viewed in your 
web browser and spoken in words by the computer. 

5.5 Optical Character Recognition (OCR) 

In many cases the access to electronic material is denied, or limited. In such cases the 
only way to gain access to these materials is through scanning and the use of software that 
enables character recognition. Because of the spatial nature of mathematics, ordinary OCR 
software does not provide a solution to this problem. Science Accessibility Net, offers a 
product InftyReader (http://www.sciaccess.net) that enables OCR of mathematical texts. 

5.6 ViewPlus Technologies 

This company provides many solutions to the visually impaired, including the TIGER Braille 
embosser that was mentioned earlier – see http://viewplus.com. 

To conclude, the blind and deaf educator Helen Keller (1880 – 1968) said: 

‘Not the senses I have but what I do with them is my kingdom.’ 

In our new millennium, with its as yet uncharted possibilities, these words are probably even 
truer than ever before. 
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Mathematical learning web -- informal introduction 

In Mathematical Reasoning in the Elementary Grades [1], Susan Jo Russell 
introduces the concept of a mathematical learning web, which for her means the learning of 
mathematical concepts in a mathematical context which supports the new ideas.  She 
introduces the concept to help explain why elementary school children learn mathematics 
better when the ideas are presented in an interrelated manner as opposed to isolated concepts 
or facts and to support a style of teaching which promotes mathematical reasoning. She uses 
the terms `memory' and `mathematical memory' to make a distinction between learning in 
isolation and learning in a 'web' of a mathematical context. 

To help clarify the learning web concept and to support its validity, Russell tells about some 
of her experiences with the formula m(A) = 180 - (360/n) for finding the measure of an 
internal angle A of a regular polygon with n sides [1].  At various times during her 
educational and professional careers, she needed to use specific instances of this general 
formula.  When she needed to use the formulas regularly, she could usually remember them.  
However, when she did not use them for a while, then she had trouble remembering them.  
Through some mathematical experiences, she developed a context into which the formulas 
fit, and now, whenever she needs the general formula or an instance of it, she is able to easily 
recreate it. 

Think about standing on the midpoint of a side of an n-sided regular polygon so that the 
adjacent vertex in the clockwise orientation is directly in front of you.  Picture yourself 
walking around the polygon so that whenever you reach a vertex you turn clockwise to face 
the `next' adjacent vertex.  When you reach your starting midpoint, you will have traced a 
Hamilton circuit, and importantly, for this context, you will have made n turns for a total of 
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360 degrees.  Thus, each external angle of a regular polygon has measure 360/n, and the 
measure of each internal angle is 180 - 360/n. 

 

As described in [1], in a mathematical learning web it is as if multiple tentacles or threads 
support a mathematical idea or concept so that the idea or concept is connected to and 
understood relative to other mathematical concepts.  Thinking of the interior-angle example, 
it may even be that the idea or concept is derivable from the related ideas and concepts. 

Underlying principles for a mathematical learning web theory 

Russell does not try to develop a theory for mathematical learning webs.  She does, 
however, give properties or characteristics of her learning webs.  The principles in this 
section come from her characteristics.  To help in our development of learning web 
principles, we give a formal definition of the term mathematical memory. 

Mathematical memory is the knowing of a mathematical idea or concept within a context so 
that the new idea or concept and the context are interwoven.  The new idea or concept is 
understood in terms of the context, and in fact, the new idea or concept may be derivable 
from the context. 

Principles of mathematical learning webs include the following. 

• When mathematical ideas are learned without the simultaneous development of 
mathematical memory, then the ideas are learned in isolation, and these ideas are not 
related, at least, in the student's mind to other concepts. 

• Mathematical reasoning necessarily involves a mathematical context. 

• Mathematical reasoning and mathematical memory are themselves interrelated.  
Mathematical reasoning creates the `strings' that help form a mathematical learning web 
or mathematical memory.  Also, mathematical learning webs facilitate abstract thinking 
and mathematical reasoning. 

• Mathematical webs with their interconnections enable students to understand 
mathematical problems and to formulate solutions. 

• Mathematical webs with their interconnections enable students to formulate interesting 
mathematical problems. 

As indicated in the next to last principle, Russell is interested in students being able to solve 
mathematical problems, and she emphasizes the importance of mathematical learning webs in 
problem solving. 

In the next section, we give some basics for APOS theory, a theory of learning and teaching 
mathematics at the college level.  Then we will look at mathematical learning webs and 
APOS theory together. 

APOS theory 

This introduction to APOS theory is taken from [2].  APOS theory is built on the 
research in learning done by Jean Piaget.  See, for example, [3] and [4].  The goals of APOS 
theory include developing a model for how college students learn mathematics, using the 
model to develop instructional methods which will assist students in becoming active 
learners, and developing methods to determine the effectiveness of APOS-based teaching 
methods.  For this current paper, we are mainly interested in the learning model.  The model 
has four basic stages or levels, from which the term `APOS' is derived.  According to APOS 
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theory, students learn mathematics in four progressive levels; they are the action, process, 
object, and schema levels.  The authors of [2] claim that when solving a mathematical 
problem a student may move from one level to another.  However, when learning an idea or 
concept, a student must move from action to process to object to schema.  This is not to imply 
that each student reaches the schema or even the process level for ideas or concepts, but for 
example, a student may not be at an object level with respect to a concept without having 
already been at the process level for that concept. 

Students understand a concept at the action level when they are able to follow explicit 
directions to create an outcome.  A common example is students understand the concept of a 
function at the action level when they can manually follow an explicit procedure for 
converting arguments or inputs into answers or outputs.  Another example is students' being 
able to plot order pairs on a Cartesian coordinate plane when given ordered pairs and explicit 
directions for plotting points. 

After following explicit procedural steps a number of times, a student may begin to gain a 
process understanding of a concept.  A student has a process understanding of a concept 
when she or he can internalize the procedural activities so that she or he does not need to 
physically do the steps but can mentally execute the procedure.  For the function example, a 
student with a process understanding of functions is able mentally to carry out the steps 
needed to go from arguments to answers.  For the graphing example, a student with a process 
understanding of graphing points can picture ordered pairs on a Cartesian plane without 
actually plotting the points.  The student is able to think through the process. 

Once a student internalizes a concept and reflects on that concept, then the student may move 
to the object level which is being able to conceive of the concept as an object which can itself 
be manipulated.  With the function example, a student with an object level understanding is 
able to begin with a function and manipulate the function as a whole by, for example, finding 
an inverse, composing the function with another, or letting the function itself be an argument 
to another function.  With the graphing example, a student with an object level understanding 
could manipulate a graph by, for example, reflecting it around the line x=y or by taking its 
intersection or union with another graph. 

The final level in the development of learning a mathematical concept is the schema level.  A 
student is at the schema level of understanding a concept when she or he is able to bring 
together in a unified and usable whole all that she or he knows about the concept.  This does 
not mean that the student knows all there is to know about the concept.  Interestingly, a 
student at a process level for a concept may know more about the concept than another 
student who is at the object level of the same concept.  These levels are not about how much 
a student knows about a concept but about how a student is able to use what she or he knows.  
When a student who is at the schema level of a concept is given a problem which can be at 
least partially solved using the concept, she or he is able to pull together her or his ideas 
related to the concept and use them to try to solve the problem. 

To quote from [2], `An individual's mathematical knowledge is her or his tendency to 
respond to perceived mathematical problem situations by reflecting on problems and their 
solutions in a social context and by constructing or reconstructing mathematical actions, 
processes and objects and organizing these in schemas to use in dealing with the situations.' 

Again, quoting from [2], `The purpose … is to propose a model of cognition: that is, a 
description of specific mental constructions that a learner might make in order to develop her 
or his understanding of the concept.'  Thus, APOS theory is concerned with trying to 
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determine the thinking steps and processes which a student goes through in reasoning about, 
understanding, and using a mathematical concept. 

Mathematical learning webs and APOS theory 
Though the developments of these two learning models were very different, they have 

some similarities, and when considered simultaneously, interesting questions and possible 
modifications of the models themselves arise. 

They both emphasize the importance of a person's being able to bring together mathematical 
knowledge to solve a problem.  Interestingly, the mathematical learning web model, the 
model developed for elementary students, takes this motivation one step further to place 
importance on being able to develop mathematical problems. 

There are similarities in the web model's learning in isolation and APOS theory's action level.  
When one is at an action level so that she or he can only work with an idea or concept by 
physically following procedural steps without any internalization, then the person truly seems 
only to know the idea in isolation.  In fact, when one is only at an action level with respect to 
a given concept, then the person is only a machine or robot with respect to using that concept.  
When teaching a beginning computer science course, one idea which is often mentioned is 
that a computer or a robot can not create; it simply follows instructions.  This idea is 
significant in understanding the action level and in understanding differences in the action 
and process levels.  A person with just an action level understanding of a concept is not able 
to do anything creative with the concept.  In particular, the person can not use the concept in 
problem solving because the person has to mechanically follow procedural steps when 
applying the concept. 

The concept is not internalized.  Thus, though the person can mechanically follow steps when 
the concept is applied, she or he does not know when or how to apply the concept.  Thus, the 
differences between action and process levels parallel the differences between mechanical 
abilities and creative abilities. 

In APOS theory, it is thought that when a student faces a complex mathematical problem, 
then the student may combine action level, process level, object level, and schema level 
knowledge of different mathematical concepts to understand and and solve the problem.  
However, when it is realized that action level understanding only implies a robotic ability to 
carry out the procedural steps but no understanding or when or how to apply the concept, 
then it seems clear that merely action level understanding of a concept is not useful in 
problem solving.  The authors of [2] do point out that when solving mathematical problems a 
person may move between levels.  Thus, if a person has an object level understanding of a 
concept, then when solving a problem involving that concept the person may combine action, 
process, and object level understanding of the concept to solve the problem. 

Since a person with only action level understanding of a concept can not use that concept in 
problem solving, one method which may be useful in helping students move from an action 
level to process level is to help the students learn how to apply the concept. 

There also seem to be similarities between learning in isolation and process level 
understanding because a process level understanding does not need to include a context; it 
deals with internalizing a concept. 

However, upon more reflection, one sees that internalizing a concept does give the concept a 
context though not necessarily a mathematical context; it is a mental context.  Thus, to more 
fully develop mathematical learning webs, one could incorporate two distinct ideas of 
context.  One is a mathematical context, and the other is a mental context.  This mental 
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context is a mental web which allows the person to mentally manipulate and work with the 
concept.  This mental web moves the concept from robotic only use to possible creative uses. 

 

In the next section, we consider a mathematical instruction web.  However, before going 
there, we ask the question of whether teaching could be useful in helping students move from 
one APOS level to the next.  More exactly, could having students teach others help those who 
are teaching move from one level to the next.  One would think there is potential for this idea 
because to teach something one needs to internalize the concept unless one simply reads a 
lesson to others.  Further, teaching involves being able to encapulate ideas which is similar to 
forming objects.  Finally, effective teaching often involves pulling together diverse views and 
uses of an idea or concept, and this seems similar to schema level knowledge.  Also, recall 
the APOS levels are not about how much one knows about a concept but about how one can 
use what one knows. 

Mathematical instruction webs 

A mathematical instruction web is a more complicated web than a mathematical 
learning web in that there are mathematical nodes and there are instruction nodes with 
connections between both types of nodes.  One of the problems that some mathematics 
teachers have is they have learned mathematics or pedagogy in isolation, and they do not 
know how to relate the different nodes. 

When considering mathematical instruction webs, we might think that they need not be 
complex because for mathematics teachers the mathematical nodes should be trivial in the 
sense that the mathematics should be well understood by the teacher.  However, most of us 
who teach have had experiences when the material we are teaching is new for us, and thus, 
the mathematical nodes may not be trivial.  Also, for some K-12 school teachers the 
mathematical nodes are not just nontrivial, they are intimidating.  Also, though many teachers 
are comfortable talking in front of a class, the research of APOS theory implies that teachers 
often know little of what their students are thinking as they are trying to learn mathematical 
concepts.  Thus, mathematical instruction webs may be anything but simple and clearly 
defined for mathematics teachers. 

Building on the principles of mathematical learning webs and our discussions in this paper, 
we propose principles for mathematical instruction webs.  However, before presenting the 
principles, we define instruction memory and application memory.  Application memory is 
related to mental webs introduced earlier. 

Instructional memory is the knowing of an idea or concept in a context which allows the idea 
or concept to be effectively explained to others.  This may imply that the context includes an 
understanding of how the idea or concept is effectively learned and used. 

Application memory is the knowing of an idea or concept in a context which allows the idea 
or concept to be effectively used in problem solving and problem creating situations. 

Of course, mathematical, instructional, and application memories of a concept need not be 
and are probably not disjoint. 

Principles of mathematical instruction webs 

• When a teacher knows a mathematical concept on the action level only, she or he can 
only direct students to the same procedural rules which she or he has been shown. 

• An effective mathematical instruction web is composed of mathematical memory, 
instruction memory, and application memory.  Each of these memories is, in fact, a 
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subweb of the mathematical instruction web, and the subwebs are interconnected in the 
instruction web. 

• Mathematics instruction and mathematical instruction webs are themselves 
interconnected.  Mathematics instruction creates the `strings' that help form a 
mathematical instruction web, and a mathematical instruction web enables effective 
mathematics instruction.  In effective instruction, mathematical memory, instruction 
memory, and application memory all work together. 

• Mathematical instruction webs enable teachers to solve the mathematical learning 
problems of their students. 

• Mathematical instruction webs allow teachers to create mathematical learning problems 
and situations for their students. 

In this paper, we will not further develop the mathematical instruction web.  We simply note 
that the interplay of the three subwebs: the mathematics learning web, the mathematics 
instruction web, and the application web, presents many interesting questions and challenges. 

Conclusion 

We have begun to formalize the mathematics learning web model.  We have 
compared and contrasted the mathematics learning web model and APOS theory, and in the 
process we have made suggestions regarding each model.  In particular, for the learning 
model, we have proposed the inclusion of application memory.  For the APOS model, we 
have made suggestions for helping students move from one level to the next, and we have 
clarified the action level by comparing it to robotic or mechanical activities.  Further, we 
have introduced the mathematical teaching web model.  We have not given attention to the 
facts that the mathematics learning web model was developed for elementary mathematics 
students and that APOS theory was developed for college mathematics students.  
Experiments with the web models would need to address this issue. 
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analysis. The paper exemplifies discourses producing maths teacher identities while simultaneously defending 
against interrogation of mathematical and pedagogical practices. 

Keywords: teacher education; undergraduate mathematics education; social identity 

Introduction 

This research concerns the developing maths-identities of teachers of mathematics 
who have come mostly from Caribbean or African countries to work in London and who 
were enrolled on a mathematics education module as part of their undergraduate BEd course. 
A shortage of teachers in London, has prompted the practice of teachers being recruited from 
abroad to fill vacancies, often in challenging schools [1, 2]. As some of these recruits were 
trained to certificate rather than degree level they have to study part-time after arriving in the 
UK: firstly, to get a bachelors degree, and then to gain Qualified Teacher Status (QTS), QTS 
being necessary for their continued right to UK residency (Teachernet 2007, webref). These 
‘teacher-students’, (this term is used as they were practicing teachers at the same time as 
studying for a further qualification), already had some teaching qualifications, usually from 
their home country, and, as part of the entry requirements, were expected to have had some 
teaching experience. The range of teaching experience was 15 years to home country 
teaching practice placement only; some, but not all, were currently teaching in local schools. 

This report is based on data from the “School Teachers Reconceptualising Mathematics” 
research project. This project was sponsored by the English National Centre for Excellence in 
Teaching Mathematics (NCETM) in order to investigate how this mathematics education 
module that the teachers were enrolled on impacted on their conception of mathematics as a 
school subject they were involved in teaching. The mathematics education module has been 
available for two years. Last academic year (2005-06) there were some notable comments 
from the teacher-students’ reflective reviews, for example:  

 I realise that maths is not a set of problems with a definite answer but a way of looking at 
problems and arriving at satisfactory solutions; 

                                                 
* Email: m.rodd@ioe.ac.uk 



 207

 my active involvement has enabled me to transfer to my classroom the atmosphere I was 
exposed to that fostered collaboration and interaction with materials and ideas. 

This research was set up initially to find out what the maths education module was offering 
that enabled this espoused change of attitude on both their view of mathematics and of their 
teaching approaches. However, after starting the research it was apparent that this was rather 
a simplistic question, as the analysis presented below confirms. In this paper, the analysis of 
the qualitative data gathered has used a multiple-lens approach based on theoretical 
frameworks loosely corresponding to: socio-cultural theory, discourse analysis and a 
psychoanalytic conception of the defended subject. These were the frameworks, or ‘lenses’, 
which were used in a seminar series [A]on maths-identities which I was involved with during 
the data-gathering year 2006-07. 

This paper is organised as follows: a perspective on the background of the study is given, 
followed by some methodological remarks and a brief introduction to the ‘lenses’ used to 
interpret data. Then interpretative pen portraits of Grace and of Charles are presented 
followed by a discussion and themes from other data prior to concluding. 

Background 

The ‘black subject’ [3] is at the centre of this research, despite its being ostensibly 
about overseas trained teachers, and I am not in a position, either by culture, experience or 
study, to have a special insight into these specific issues of cultural identity. To address this, I 
have found Stuart Hall’s essay ‘Cultural Identity and Diaspora’ (Hall, op. cit.) helpful. He 
writes there about ‘identity’ as a production that is “constituted within, not outside, 
representation” (p222) so how the teacher-students, who are the subjects of the research, see 
themselves as well as how they are seen, constitute their ever-evolving identities. Hall’s 
notion of ‘cultural identity’ –  with reference to African Caribbean cultural identities 
particularly - is not “a sort of collective ‘one true self’ … underlying all other superficial 
differences”, even though, he observes, this notion did “play a critical role in all the post-
colonial struggles”. His sense of ‘cultural identity’ is “a matter of ‘becoming’ as well as of 
‘being’ … subject to the ‘play’ of history, culture and power. … identities are the names we 
give to the different ways we are positioned by, and position ourselves within, the different 
narratives of the past.” (ibid. 223-225) And these teacher-students have many stories, of ‘love 
of maths’, of being a teacher, of being needed in London, that are creating and fabricating 
their maths teacher identities. 

Hall writes that ‘there is always a politics of identity, a politics of position’ as cultural 
identities are made “within the discourses of history and culture” (p226). The subjects of this 
research are in the centre of a big tussle to do with teacher supply, recruitment, the problem 
of inner city youngsters (read ‘Black youngsters’) as well as the depletion of teachers from 
their home countries. In Jamaica, Britain's teacher shortage has brought a ‘wholesale teacher 
recruitment by commercial agencies’ (BBC, 2002, webref). Identity issues figure here as 
Jamaican teachers are attracted to Britain because of historical-colonial traces like school 
uniform, structures of public examinations and, of course, English as the language of 
instruction. Another political dimension is the fairly recent tightening of regulations for 
overseas teachers which demands that these teacher-students must gain QTS within four 
years of arriving in the UK. In practice, this does not give much time to upgrade 
qualifications, to settle into a new environment as well as to gain QTS. (Teachernet 2007, 
webref). The NASUWT-commissioned report [1] found that employing headteachers 
assumed that teachers who shared an African Caribbean heritage with pupils would “find it 
easy to manage African Caribbean pupils, which was not the case” (p38). They also reported 
on the difficulties such teachers had in adjusting to supply teaching and the humiliation they 
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felt when told that they were ‘unqualified’ despite, in many cases, being considered first-rate 
in their home country and having even as much as 15 years teaching experience.  

 

Hall discusses the ‘presences’: of the African, the European and the American New World on 
the Caribbean identity “[To the] Africa, which is a necessary part of the Caribbean imaginary, 
we can’t literally go home again …‘Europe’ belongs irrevocably to the ‘play’ of power, to the 
lines of force and consent, to the role of the dominant in Caribbean culture.” (p232) and the 
American presence ‘stands for the endless ways in which Caribbean people have been 
destined to “migrate”; it is the signifier of migration itself - of travelling, voyaging and 
returning as fate, as destiny; of the Antillean as the prototype of the modern or post-modern 
New World nomad, continually moving between centre and periphery.’ (p234) In terms of 
this project, this image of voyaging as destiny is apparent from study by Miller, Mulveney 
and Ochs, [2] of the Commonwealth teachers’ protocol. They remark that as ‘the global 
teaching profession is in a scramble to find teachers … rich countries, .. including the UK, 
continue to recruit teachers from poorer, less-developed countries …[and] some teachers in 
developing countries have voluntarily and forcibly migrated to industrialised countries’ (op. 
cit. : 154). They report that over the period January 2001 to July 2004, 20,610 ‘teacher’ work 
permits were issued by the UK and high recruitment over this period came from South Africa 
(6722), Australia (4484), New Zealand (2515), Jamaica (1671) and Canada (1591). (These 
figures need to be read with caution as there are non-work permit routes available too.) 
Jamaican representatives raised the matter of their ‘brain drain to the UK’ at the 
Commonwealth heads of government meeting in 2002 (subsequently The Commonwealth 
Teacher Recruitment Protocol was agreed in late 2004 that includes further monitoring but no 
legal authority). Yet as long ago as 1960 Elsa Walters [4] wrote ‘the demand for trained 
teachers in the West Indies is as old as the struggle to establish a popular system of 
education’. Hall’s words link the various journeys of teachers to and from the West Indies: 
‘Diaspora identities are those which are constantly producing and reproducing themselves 
anew, through transformation and difference.’ (Hall, op. Cit. p235). 

Methodology 

During the academic year just past (2006-07), I was course leader for the mathematics 
education module in question and taught about half of the 20 scheduled classes which were 
distributed over the academic year, the other classes being taught by colleagues. The teacher-
students were introduced to the research at the beginning of the academic year and only 
methods of collecting data that were considered beneficial to their development on the course 
were used. For example, towards the end of the course, each of the teacher-student was 
invited to come for an interview, it was emphasised that this was voluntary, but hopefully 
would be helpful, not only for the research project of which they were aware, but also for 
them to write their assignment on their developing reflective practice as they would have the 
audio-recording of their spoken narrative.  

The data-sets that were collected throughout the year included: initial questionnaire on 
expectations, biographical data and short attitude survey, mathematical tasks with ‘affective’ 
personal response notes; presentations to the teacher-student class on three ways to teach a 
topic; short essays reflecting on their professional development and the role of the course, 
and the individual interviews (for which all of the students did volunteer). 

Lenses, data and interpretations 

Each of the shortcut terms ‘sociocultural’, ‘discourse’ and ‘defended-
subject/psychoanalytic’ are markers for significant intellectual movements from the twentieth 
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century that are still developing. These theories give rise to ways of seeing the world 
generally, identity specifically and can be applied to maths-identities in mathematics 
education in particular. Indicative source concepts related to these lenses and relevant to this 
paper are, respectively, theories of social learning through practices in communities [5], 
analysis of discourse [6] and theories of the defended subject [7]. In this report, the focus is 
on the teacher-students’ maths-teacher identities. A maths-teacher identity an agglomeration 
of practices, positions, and feelings related to being a  teacher of mathematics; it is both self-
constructed and informed by others, (e.g. other teachers and representatives of  regulatory 
bodies), in this sense it is analogous to Hall’s cultural identity, mentioned above.  

I present data in the form of pen portraits of two of the teacher-students called here Grace and 
Charles. These stories of Grace’s and Charles’s respective developing maths-teacher 
identities are constructed from their interviews, their short papers on their reflective practice 
and other recorded data such as quick response surveys in class. These two have been chosen 
as their data represents a good range of the issues: Grace is from Jamaica and has been in the 
UK two Years. She is certificate trained for primary school, though had not had a permanent 
post before she came to the UK. Since arrival in England, she has done a little teaching 
assistant work in primary schools in London and a little supply teaching in secondary 
schools. She has the least teaching experience of all the teacher-students. Charles is from 
Ghana and has been in the UK 4 years. He taught secondary mathematics and science in 
Ghana from 1988 to 2003 thus giving him 15 years professional experience before he arrived 
in London which was the most experience of all the teacher-students. Since coming to 
England he has not been able to secure a teaching post at a school but does teach maths and 
science as a private tutor. 

Grace 
‘all discourse is ‘placed’, and the heart has its reasons’ 

Stuart Hall, ibid., p223 

What is Grace like? Cheerful, with shoulder-length straightened hair, still in her twenties so 
younger than most of the class, absent more than most (she missed four out of 20 sessions). 
Her teacherly qualities of communication skills (she has good eye contact and uses her hands 
when explaining) and interest in others’ perceptions and reasoning more visible to me than 
her mathematical ones (of choosing to do mathematics and being accurate/aligned in her 
mathematical skills and reasoning); she is more confident socially than mathematically. From 
quick-response data, adjectives she uses about herself are ‘excited’ and ‘pleased’ and that 
‘understanding’ maths is important and she wants to improve her understanding.  

To get something of a picture of Grace’s developing maths-teacher identity, firstly I present 
extracts from her interview and interpret the initial chunk of her interview (which is on 
maths) with reference to each of the lenses in turn. Then I offer further interpretation (on 
teaching and on maths teaching) without explicitly mentioning ‘lenses’ unless appropriate. 

 Starting at the beginning of her interview, after being asked what maths was like for her at 
school, Grace replies: 

G It's a long time.  At secondary school I had to do maths twice.  The first time I took 
it I didn’t pass because I really thought I couldn’t do maths but then I got a different 
teacher and then I passed.  From then I have a love for maths. --  three lines -- 

I You said you have a love for maths? 

G I still have a love for maths. 

I What do you really like? 
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G I don’t know, I think there is something special about doing maths and applying it. 
And I think most of this is practical and you don’t have to do a lot of reading in the one 
sense.  Yes there’s theory and everything but there’s a practical side to it. I think some 
subjects, like you get involved; it becomes a part of you like you’re doing it and you’re 
finding out, whether it's equations or just doing simple maths or where you have to use 
reasoning, it's like you’re getting involved. So it's this feeling of accomplishment that it 
gives me. 

The focus in this part of the interview was on maths. What sense of Grace’s developing 
maths-identity come through from this short piece?  

Using a ‘socio-cultural’ lens, what comes through to me is her sense of maths being part of 
the social and material world. At school, passing or not passing, is very much the way of 
things and people help people to get through. Doing maths is an active enterprise that gives 
personal satisfaction, does not require so much reading and has social purpose. 

From my narrative/language ‘discourse perspective’ Grace tells her story, positioning her 
attitude as more enduring than her results and presents her notion of embodiment. She moves 
from the position of ‘couldn’t do maths’ almost as if through the agency of another person. 
Her use of ‘practical’ validates maths as an enterprise, yet her ‘I don’t know’ signals lack of 
desire to be pressed. Her exemplification of aspects of mathematics (e.g. ‘equations’) indicate 
what she feels comfortable with. Her spontaneous use of ‘love’ is remarkable, about which 
more below. 

My understanding of ‘defended subject/emotion’ draws to my attention Grace’s need to put 
emotion right up front. By using the word ‘love’, a pinnacle of words, it feels like her worth 
(as a maths person) cannot be challenged as her feelings for mathematics are intense and 
positive. Her ostensive positivity thus can be construed as defensive. She also avoids, defends 
herself against, possible difficulties of ‘reading’-based subjects. Her use of ‘special’ 
reinforces the position of mathematics, which is then internalised, embodied, made hers 
through the personalisation of positive feeling and satisfaction. Being hers, she aims to 
defend herself against the possibilities of future ‘not passing’. 

Other aspects of Grace’s developing maths teacher identity include her beliefs about learning, 
(which she describes in the current Visual-Auditory-Kinesthetic terms), her awareness of 
listening to learners to aide teaching, her delight in being challenged (e.g. she did not 
conceptualise fraction as numbers but as visual ratios, parts of whole-ones). Yet for Grace, 
becoming a teacher seems to have happened as a result of a serendipitous experience and 
comes across as a great shift in her self conception. When asked about what had drawn her to 
teaching she says: 

Wow! At first I never thought I would go into teaching. Ever. Ever. Ever. And then I 
started doing some voluntary work in a primary school teaching reading. And then I had a 
love for it because when I realised that I was working with kids and how much they’ve 
improved I felt like I’ve got a lot to contribute to the teaching. That’s when my love started 
developing, that’s when I did a lot for teaching, it's just like an inspiring moment I would 
say. 

I was not able to tell whether teaching was too high status to have been on her adolescent 
career agenda or too staid a profession. Nevertheless, Grace’s potential-teacher identity is 
changed by experience in a classroom and by her perception of the progress of the children 
she has worked with. The social and emotional context of the classroom has re-positioned her 
and generated her desire to get qualified. She can see herself in the society of the classroom; 
it is worthwhile. Interestingly, it seems that Grace feels that love justifies as well as drives her 
plans. Is it her sense of self that comes from what she loves? This emotion-driven theme is 
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continued, with Grace, despite being ‘tired’ and having had warnings about ‘behaviour’, is set 
on teaching in a secondary school  

that’s where my heart really is … I like the maths or science at that level. That’s the level I 
like. And the difference is that you’re a maths teacher or science teacher where you’re not 
teaching all these different subjects, like art. 

However, her next few sentences on only recently understanding the formula for the area of a 
triangle as well as other evidence (e.g., ‘I always thought probability was just one in two chance of 
doing something. It's like basically yes or no, when you did that probability [now I have a] different perspective 
on probability.’) indicate that she is not (speaking with a teacher trainer’s hat on) at ‘that 
[secondary maths] level’. Her confidence is buoyant, her pleasure in her progress towards her 
espoused goal of understanding admirable, but her mathematical training is not yet enough 
for ‘the level’ she says she likes; (why does she say she ‘likes’ secondary maths?) And this 
mis-match between her language of interest and her enthusiasm and her available 
mathematical knowledge, skills and understanding is not within her awareness, for if it were 
she would surely defend her self against being seen as so unknowledgeable? From the 
perspective of the English secondary maths teacher training community, Grace’s identity as a 
secondary maths teacher is not yet viable; will she find this out and continue her studies or 
will a school-teaching opportunity come first? 

Charles 

‘getting to the professional touch now’ 

Charles, from his March 2007 interview. 

Charles is modest, helpful and had 100% attendance. Charles seemed to me, at least at the 
beginning of the course, more confident with his mathematics than he was socially. He had 
taken A levels in maths and chemistry and a three-year maths (teaching) diploma in Ghana. 
Over the year, other students got to know that his reserved manner did not mean that he was 
not always willing to help and he was pleased when fellow students turned to him. From 
quick-response data, adjectives he uses about himself are ‘excited’, ‘interested’ and ‘pleased’ 
and that as an important principle for teaching mathematics he wants ‘to assist students/pupils 
develop knowledge in solving problems’.  

Starting with analysing the first part of his interview, I’ll analyse Charles’s responses from 
the three perspectives and then draw some other points together concerning his mathematics 
teacher identity. 

I tell me a little bit about what maths was like at school for you when you were a 
child? 

C Yes I had an interest in mathematics. Initially the teacher who started with me was 
very good and I developed an interest in the subject.  So I decided to carry it forward.  
Basically that’s where my interest lies.  And I’ve progressed and found it very well.   

I When you talked about your first teacher, how old were you at that stage? 

C I was 15 years.  It's in the secondary. 

I Yes.  So your teacher was (interrupted) 

C Very knowledgeable, yes, very good. 

I So before you were 15 can you remember what it was like, maths? 

C I was doing very well.  In fact in all the subjects I was doing well.  Mathematics 
especially I was doing very well. But my interest actually when I decided that I would 
carry it forward is when I got the teacher and he did very well. 

I Can you tell me about the teacher? 
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C I can’t remember his name.  Actually he was one of the US Peace Corps who came 
to the school, she (inaudible)  

I Say that again? 

C A Chinese lady.  (sounds like: Shi-e Wu)…taught us the mathematics very, very 
well and I developed an interest in it.  But she told us that mathematics is the basis for all 
academic work and if you want to study it very well to the highest level then you will need 
to do very well in mathematics.  As you move ahead you come across mathematics in 
every aspect of your learning.  And I took that even further, I also experienced it if you 
have the mathematics as the basics you can do almost everything at the highest level. 

Reading this transcript was quite salutary. I didn’t think of Charles as being other than fluent 
in English, but this text suggests to me that I did not always pick up on when there had been a 
linguistic misunderstanding. In terms of his maths-identity, the three perspectives again 
illuminate different facets:  

Starting with a socio-cultural lens, what I pick up on here is Charles’s recognition of the 
importance of the skill of his remembered teacher. His image of her, is of a ‘Chinese lady’ 
who came via the US peace corps, suggests this ‘sent’ teacher had a certain international 
status. From the text, he has a memory of her view of mathematics as both foundational and 
door opening which he seems to have adopted. 

Looking at his narrative and the language, Charles uses the term ‘very well’ repeatedly to 
refer both to the teacher’s skill and his success. He also uses the term ‘interest’ several times 
in the interview. The story Charles seems to be telling is that he has chosen mathematics, 
having ‘decided to carry it forward’ - maths as important baggage for his life-journey – 
having been oriented to the importance of mathematics by the Peace Corps teacher and that 
his ‘interest’ and as he’d done ‘very well’ suggest that maths chose him too. In this extract, 
he positions himself as having ‘progressed’ and thus it is a suitable, if not natural, that he 
continues with mathematics. 

From the defended subject and emotion-orientated point of view, his defence seems to be 
solidly constructed around the twin virtues of achieving ‘very well’ and having ‘interest’. 
And with these virtues established, his maths-identity should be undeniable! I am surprised 
that he gets the gender of the teacher confused (but I cannot be sure that I have misheard); is 
this gender slip to do with identification with himself and the subject or just a linguistic slip? 

Other aspects of Charles’s developing maths teacher identity include his newly taken-on 
notions of mathematics teaching, his pride in being a student at London University (and his 
identifying of me as his current teacher), and his “one problem” of not being able to get a 
classroom teacher’s job in London, despite his experience in Ghana. 

Like Grace, teaching was not Charles’s first choice; he was going to do engineering, 
following his father. However, the ‘unfortunate’ incident of the theft of school fees (see 
handout), thwarted his engineering ambitions and he used his less-good-than-required-for-
engineering qualifications to get on a three year teaching diploma. And he ‘decided to 
stay…[as] teaching is also a very good profession’. Charles’s tone is almost apologetic and 
his story of the theft does not occur until half way through the interview. It seems that 
Charles’s maths teacher identity is quite at risk at present  - he cannot get a classroom post in 
London and he has to return to study after many years a professional, so this admission that 
he did not originally intend to teach is quite uncomfortable. Nevertheless, when asked 
specifically about mathematics, Charles’s reply is completely about his ‘being with students’ 
and how he ‘did his best’ for them which made them ‘happy’. Even when pushed, Charles 
does not talk about mathematics, even as Grace had done, though, when asked about effects 
of the course, he does mention a geometric puzzle that I had presented to the class on the 
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previous week He gives this as an exemplar of his new views on mathematics teaching which 
he sums up by saying ‘[maths teaching is] more than just delivery but trying to give something special to 
the students’. This is what he calls ‘the professional touch’ and he relates it to my practice of 
offering task-based learning; he says: ‘I love to come to your class … [I get] a lot of ideas’. He also 
insists on saying at the end of the interview that he ‘always dreamt…of getting a qualification from 
here’ [University of London].  

The picture so far is that Charles, a dignified, middle-aged professional man is returning to 
study at an institution he respects. He is rather defensive about his professional journey, and 
while he is ‘very happy’ to be doing some private tutoring, he would rather be a classroom 
teacher. With Grace, she is seeking out a potential identity as a maths teacher, but Charles has 
a maths teacher identity already: so he must defend this aspect of self. Now Grace is naïve 
enough to expose her lack of mathematical knowledge, what about Charles and mathematics? 
Information from other data sources show that, relative to the English QTS, Charles has both 
a lack of mathematical and of pedagogical skill. For example, he writes confidently, but 
incorrectly, about the area-comparison puzzle, and in his presentation of three ways to teach a 
topic (his choice was long multiplication) to his peers and teachers, he confuses his methods 
of multiplication and stands and delivers rather than offering tasks for the other teacher-
students. His maths-teacher identity is tenuous. 

Discussion 

Grace and Charles were students of mine on the mathematics education module, so 
my investment in them, and theirs in me, will surely impact on my reading of their maths-
identities. I found myself surprised when Grace went on about her ‘love for maths’, as I had 
seen her in class as someone who seemed to avoid mathematical talk and other activity and 
whose mathematical performances (class presentation, problem solving done in class, written 
mathematics) were not rich, deep or accurate. So what is Grace doing when she expounds 
with such enthusiasm? Is she trying to create an identity through talking herself up or is 
trying to impress her maths-teacher identity on me? Charles has a life history that includes 
identification with teaching mathematics yet his practices did not change sufficiently within 
the period of the course to come within my conception of a potential mathematics teacher. In 
his interview Charles was aligning himself with the practices I had been offering, but either 
had not developed the skills to make them his own or did not actually desire to adopt them; 
(as I don’t think Charles was other than a very straightforward person, a lack of desire to 
adopt these practices would have to be operating at a subconscious level, as well they might). 

Themes or issues from analysing the data from the whole class of teacher-students also relate 
to the identities as teacher of mathematics. So, there was general talk and writing about 
shifting from didactic teaching to presenting mathematics in different ways. However, at their 
presentations, which was, to be sure, only half way through the course, only three out of the 
14 gave task-based ways of teaching a topic. The notion of assessment for learning has been 
introduced on more than one of their BEd courses and this was mentioned by the majority as 
being influential on their practice. The teacher-students as a class were quick to pick up on 
and use language that expressed their feelings about mathematics learning. Quick written 
responses after mathematical tasks had been worked on were rich with expressions of feeling: 
elation, surprise, fear and depression. They also, like the teachers Bibby [8]worked with, 
expressed shame, e.g. ‘what if I was the only one who couldn’t do it’. Another theme was 
professionalism as mathematics teachers and settling in to working in London/English 
schools where the issues of pupil behaviour were ever-present.  
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Concluding 

This research shows some of the tensions overseas trained teachers experience and the 
ways they adapt by adopting positive discourses that defend their mathematics teacher 
identities. Specifically, they have a need to position themselves as mathematics teachers 
because they have found, or think they might be able to find, employment in teaching 
mathematics, yet their relationship with mathematics is fragile as their mathematical 
knowledge base and mathematics-related pedagogical skills are limited; Their experience of 
mathematics pedagogy comes from their home country and is not the same as that expected 
in London schools; to protect their fragility, a defensive positivity is espoused.  
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Markovian queues are frequently present in diverse engineering fields. Their steady state model is useful in 
solving problems related to dimensions of installations, equipment and human resources as well as to obtain 
system parameters representing the system performance. To model these steady states, systems of differential 
equations could be used to represent the transient states and later, once equilibrium has been reached, to obtain 
the equations for the steady state. When presenting these types of problems to students with a weaker 
mathematics background, it may be easier to use a flow chart method.  This paper intends to show how these 
flow charts may be utilised to represent simple Markovian queues. 

Keywords: Flow diagrams for stochastic queues; modelling Markovian queues. 

1 Introduction 

Stochastic processes are those whose nature is governed by probabilistic laws [2]. A 
Markovian process is a very simple stochastic problem where in order to establish the 
behaviour of a given parameter at a future time, the only information needed is the one 
related to the value of the parameter at the present time, independent on the past behaviour. 
That is, it is a memoryless process. 

Stochastic queue is a process where clients look for some service provided by servers units 
under certain pre-established policy and where the demand is larger than the offer. Clients 
can originate from finite or infinite populations, they can arrive by units or in groups which 
size could be constant or a stochastic variable, there could be as many servers as management 
decides to provide. The services can be performed simultaneously or sequentially and 
following certain policy of attendance (FIFO, LIFO, SIRO, and PRI) and the two important 
processes present in the system, namely, arrivals and services can follow different probability 
distributions. 

It has been shown that the exponential distribution is the only continuous distribution that has 
this memoryless property and the inter-arrival times are exponentially distributed whilst the 
number of arrivals in a given period of times follows a Poisson distribution. 

These properties allow the modelling of the simplest Markovian queue, namely birth and 
death process (where the only allowed transitions from a given state are to their adjacent 
states, that is if the system at a given time is in state n , in a very near future, it will be either 
in state 1−n  or  1+n ). 
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The parameters in which we are interested at are those useful for obtaining the dimensions of 
installations, equipments and human resources as well as those used to control the operational 
processes performances. Some of these parameters are: the expected number of clients in the 
system (or in the queue), the expected waiting time any client will spend in the system (or in 
the queue), the expected time servers are busy, the percentage of clients served immediately 
after arrival, and so on. 

To obtain these parameters, the studied system has to be in its steady state where the mean 
values of stochastic variables represent the system behaviour.  

2 Objective 

The purpose of this paper is to present the flow diagram representation of the steady 
state of a stochastic queue as a short cut to obtain the probabilities associated to each of the 
system states. These, in turn, will be used to determine the process performance parameters. 

3 Flow diagrams 

Flow diagrams are composed of nodes representing the process states (number of 
elements in the process at a given time) and by arcs representing transitions between states. 
Assuming that the system under study is at an equilibrium state (steady state) the flow 
balance law can be applied. This law states that the average of the total flow into any state 
has to equal to the average of the total flow out of the state. As an example, assume we are 
working with the steady state of birth and death processes where individuals are born at a 
constant rate λ and they die at a constant rate µ, the correspondent flow diagram for states n-
1, n and n+1 is given by the diagram of figure 1.   

 

 

                                                  
Figure 1: Flow Diagram 

 

Using the flow balance law,, the correspondent balance equation for the n-state, is  

 

11 +− +=+ nnnn PPPP µλµλ      (Equation 1) 

where  nP  is the probability the system is at state n for all possible n. 

Equations like these are useful in obtaining system performance parameters.   

4 Performance Parameters 

There are several parameters that express the system performance and that are useful 
to measure installations, equipments and human resources. Among then, the parameter L, 
which represents the expected number of elements or clients in the system at any time, is 
useful one as this leads to other parameters.  One of these parameters is N the stochastic 
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variable representing the number of elements in the system, its mean value, L, is defined as 
follows: 

 

∑==
n nnPNL ]E[     (Equation 2) 

 

where nP   is the probability the system is at state n, for all possible state. 

All other parameters representing efficiency or performance of a given system depend on the 
set of states’ probabilities which will be obtained from flow diagrams and corresponding 
balance equations as found in figure 1.  

The following three scenarios are examples for the simplest birth and death systems where set 
nP  and the parameter L will be obtained using flow diagrams; 

. M/M/1/∞/FIFO  

. M/M/c/K/FIFO  

. M[X]/M/1/∞/FIFO (a complicated Markovian process where arrivals are in groups but 
servicing is individual) 

The last example is beyond the scope of undergraduate studies, but is useful for graduate 
students in diverse areas like Applied Mathematics, Operations Research and Production 
Engineering Programs. 

4.1 M/M/1/∞/FIFO 

This model, according to Kendall notation, is a stochastic Markovian model 
characterised as a birth and death problem where the elements arrive at inter-arrivals times 
following an exponential distribution with constant rate λ, the services times are 
exponentially distributed with constant rate µ; and the services are performed by an unique 
server [3].  There is no limitation for the number of elements in the system and the adopted 
policy for attendances is the FIFO one, that is, first element in the queue waiting for service is 
the first element to be attended as soon as server is free.  

The flow diagram that represents this process is the one of figure 2: 

 

 

                                  

 
 

Figure 2: Flow Diagram M/M/1/∞/FIFO 

 

λ 

µ 

λ 

µ 

0  1  2

λ λ

µ

n n+1  

µ

λ

µ

 ...
λ 

µ 

 ....... ........ ........ 



 218

And the correspondent balance equations are  

  111 ≥+=+ +− nPPPP nnnn µλµλ        (3)  

10 PP µλ =     

 

From the set of recurrent equations, the nP   are obtained for every n: 
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From (4) and (5) and from the L definition, equation (6) is obtained: 
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where the infinite sum converges if  µλ < , condition for the system to reach the steady state. 

Other performance parameters are obtained from L, nP  and from Little’s formulae [1]. 

4.2  M/M/c/K/FIFO 

This model, according to Kendall notation, is an stochastic Markovian model characterized as 
a birth and death problem where the elements arrive to the system at inter-arrivals times 
following an exponential distribution with constant rate λ, the services times of each of the 
servers are identically exponentially distributed with constant rate µ; the services are 
performed by c servers; there is  limitation for the number of elements in the system, K,  and 
the adopted policy for attendances is the FIFO one, that is, first element  in the queue waiting 
for service is the first element to be attended as soon as one server is free. 

 The flow diagram that represents this process is the one of figure 3: 
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  Figure 3: Flow Diagram M/M/c/K/FIFO 

 

And the correspondent balance equations are  
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In this kind of system, one with limited space for queue , there is an important parameter of 
performance that have to be taking care of, namely, the rate of  lost clients given by equation 
(10) 

)1( KP−=′ λλ                   (10) 

The parameter, L, may be found by the substitution of the equations (8) and (9) in equation 
(2).  Other performance parameters are obtained from L, Pn and  Little’s formulae modified 
due to the limitation in the system capacity using λ` instead λ [1]. 

 

4.3 M[X]/M/1/∞/FIFO 

This model, according to Kendall notation, is a stochastic Markovian model where the 
elements arrive in system in groups of k elements at inter-arrivals times following 



 220

exponential distribution with rates kλ .  The services times are exponentially distributed with 
constant rate µ and the services are performed by a unique server; there is no limitation for 
the number of elements in the system.  The adopted policy for attendances is the FIFO one, 
that is, one element on the first group in the queue waiting for service is the first element to 
be attended as soon as the server is free. This is not a simple birth and death process since the 
arrivals bring k clients at a time into the system. The flow diagram, figure 4, shows this 
process: 

 
Figure 4    Flow Diagram M[X]/M/1/∞/FIFO  

 

From this diagram the following equations represent the steady state of the system: 
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Due to the complexity of this process the correspondent states probabilities are obtained from 
the probability generating functions given by:  
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5 Conclusions 

When working with undergraduate students, appropriated teaching techniques should 
be chosen taking into account the background they already have. The use of flow diagrams 
proved to be very useful in the representation of the steady state of stochastic processes. 
These diagrams provide a practical way of finding the balance equations that represents the 
steady state of the process under consideration. With this technique the students easily grasp 
the main ideas without dealing with more advanced techniques of mathematical and 
probability concepts.  
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An interactive online calculus text 
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We describe the development and use of an online textbook for first-year calculus, the second edition of a book 
that first appeared in print.  The principles on which the book is based are the same as those the first two authors 
developed in Project CALC more than a decade ago, but the online version has many interactive features that 
could not be in a print-based text.  We expect the book to be published by the Mathematical Association of 
America, but for the time being (while development continues), it is freely available to all at 
http://www.math.duke.edu/education/calculustext.  We are eager to have teachers and students use any or all of 
it and provide feedback. 
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1. Background: Project CALC 

The textbook we describe here is the second edition of Calculus: Modeling and 
Application, a book that was first developed as part of Project CALC: Calculus As a 
Laboratory Course.  This project was funded by the National Science Foundation (NSF) from 
1988 to 1995, and the first edition textbook and lab materials were published in 1996 by 
Houghton Mifflin, shortly after acquiring the intended publisher, D. C. Heath.  Some online 
lab modules were later developed as part of the Connected Curriculum Project, also funded 
by NSF from 1993 to 2001.  These print and online materials are still in use at some colleges. 

Project CALC had (and still has) the following characteristics: 

• hands-on activities  

• discovery learning  

• real-world applications  

• writing and revision of writing  

• high expectations of students 

• teamwork 

• intelligent use of available tools 

• emphasis on students checking their own work  

These features were selected on the basis of research on what educational strategies lead to 
durable and transferable learning, as well as on modeling what students could be expected to 
encounter once they leave the academic world. 
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Early on we established goals for what we expected Project CALC students to learn and do, 
while in each semester of the course, as well as after the course was over.  For example, here 
are some of our in-course goals: 

 

Students in the Project CALC sequence should be able to 

• understand concepts rather than merely mimic techniques; 

• demonstrate understanding by explaining in written or oral form the 
meanings and important applications of concepts; 

• construct and analyze mathematical models of real-world phenomena,  
including both discrete and continuous models; 

• distinguish between discrete and continuous models and make judgments 
about the appropriateness of the choice for a given problem;  

• understand the relationship between a process and the corresponding 
inverse process; 

• select between formal and approximate methods for solution of a problem 
and make judgments about the appropriateness of the choice; 

• select the proper tool or tools for the task at hand. 

And at the end of the course: 

Students who complete the Project CALC sequence should be able to 

• use mathematics to structure their understanding of and investigate 
questions in the world around them, 

• use calculus to formulate problems, to solve problems, and to 
communicate their solutions of problems to others, 

• use technology as an integral part of this process of formulation, solution, 
and communication, 

• work and learn cooperatively. 

In 1991, Project CALC won the EDUCOM Higher Education Software Award as Best 
Mathematics Curriculum Innovation, and in 1993 it was cited by Project Kaleidoscope as A 
Program that Works. 

2. The Second Edition 

Our desires for the second edition are to 

a) Make the text flexible, hyperlinked, interactive, richly illustrated, and available at low 
cost, and 

b) Demonstrate the feasibility of an online textbook. 

We are supported in this effort by an NSF grant (NSF-0231083) to the Mathematical 
Association of America (MAA) for the MathDL Books Online Project, which is also 
supporting development of a Mathematical Modeling text by Frank Wattenberg and his 
colleagues at the US Military Academy, as well as two demonstration chapters of David 
Bressoud’s A Radical Approach to Real Analysis. 
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The first step in our process has been to redesign and redevelop the textbook entirely online, 
and that step is essentially complete.  Some of the issues we encountered in this phase were 
page design, navigation, directory and file structure, sources for illustrations, nature and 
implementation of the built-in interactivity, technical requirements for the user, and effective 
presentation of mathematics online.  Here are brief comments on how we dealt with those 
issues. 

The basic page design and a cascading style sheet (CSS) for implementing it were provided 
for us by an in-house designer at MAA.  We constructed our own hierarchical directory 
structure, based on chapters and sections of the book, with consistent naming of file types 
across chapters, and relative internal links, so that the entire structure could be moved without 
breaking any links.   

Our navigation is based on a pop-up Table of Contents window for each chapter that remains 
open beside or overlapping the main text window.  Supplementary notes, comments, and 
checkpoints for students also open pop-up windows that can be closed when they are no 
longer needed.  Each main page has forward and back buttons, as well as a link to Contents 
page. 

Our illustrations are of two kinds – mathematical graphs or diagrams and photographs or 
other illustrations.  For the first kind, we construct a mathematically correct graph in a 
computer algebra system (usually Maple®) and then edit it in a graphic tool (usually Paint 
Shop Pro®).  For the second, we find public domain or otherwise free photos (e.g., from US 
government sites or one of several free stock photo sites) or we take our own digital pictures, 
and then we crop, resize, etc. (again in Paint Shop Pro®). 

We have a variety of interactive features, ranging from low to high on a technology scale.  
For example, we have a built-in pop-up numeric calculator, as well as files from which a 
student can print simple graph layouts, detailed graph paper, or slope fields for sketching 
solutions of differential equations.  We have some embedded applets for carrying out certain 
experiments, and we have many prepared computer algebra (CAS) files in Maple® and 
Mathcad® that each get students started on an assigned task, but that will not completely 
solve the problem without student thought and inputs. 

Our main text pages are constructed in XHTML, with most of the formulas presented in 
MathML, using code constructed in WebEQ®.  We also use ASCIIMathML (a free product 
available under the GNU General Public License) for some of our formulas, including all the 
ones in pop-up pages, which are ordinary HTML. 

To support our use of MathML across platforms, we require that the user have or install the 
Firefox browser and Mozilla’s MathML fonts.  To support ASCIIMathML and our control 
code for pop-ups and other interactions, we require that the user enable javascript.  And to 
support our CAS activities, we require (at present) either Maple® (version 9.5 or later) or 
Mathcad® (version 13 or later).  Our embedded applets require the Flash® player, which is 
included with all modern browsers, but it’s also available as a free download. 

3. What’s in the Book? 

In this section we present a brief summary of each chapter, including some of our 
reasons for structuring the book as we have. 

Chapter 1: Relationships.  The central question of the introductory chapter – which contains 
no calculus – is “What is a function?”.  Our objective is to separate this concept from other 
relationships between varying quantities and especially to separate it from “formula”.  Our 
purpose is to replace some of the inappropriate ideas students typically bring from secondary 
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mathematics with a healthy regard for the mathematical concept that will be the foundation 
for the rest of the course.  We also take up the algebra of functions and pose some problems 
for which the solutions are functions or classes of functions (e.g., symmetry, additivity). 

Chapter 2: Models of Growth: Rates of Change.  Here we establish some basic reasons for 
studying calculus, especially to be to able solve differential equations.  Our primary example 
is the natural population growth equation, the simplest ODE to solve, and an immediate 
reason for moving beyond polynomials.  We introduce difference quotients, derivatives, slope 
fields, initial value problems, solutions (which are, of course, functions or families of 
functions), exponential and logarithmic functions, and logarithmic plotting.  The primary tool 
for understanding the derivative is zooming in on locally linear functions, and the primary 
formula is “slope equals rise over run.” 

Chapter 3: Initial Value Problems.  This short chapter builds on Chapter 2, introducing 
Newton’s Law of Cooling (exponential decay) to solve a murder mystery, then studying 
falling objects without air resistance (polynomial solutions). 

Chapter 4: Differential Calculus and its Uses.  This is the heart of the first-semester course, 
consolidating what has been learned about derivatives to take up optimization, concavity, 
Newton’s Method (as an exercise in local linearity), and the basic formulas for 
differentiation.  The product rule is introduced to study the growth rate of energy 
consumption, the chain rule to study reflection and refraction, and implicit differentiation to 
calculate derivatives of the logarithmic functions and of general powers.  Zooming in is 
related to differentials and Leibniz notation. 

Chapter 5: Modeling with Differential Equations.  Here we return to falling bodies (e.g., 
raindrops, skydivers) and introduce air resistance proportional to the velocity or its square.  
The latter requires (for now) numerical solutions, and we take up Euler’s Method as another 
“slope equals rise over run” application.  We introduce periodic motion (with second-order 
ODE’s, harking back to Chapter 3, where we derived position from constant acceleration), 
along with the basic trigonometric functions and their derivatives.  This chapter concludes the 
first semester, and at the end of the chapter we summarize the derivative calculations. 

Chapter 6: Antidifferentiation.  At the start of the second semester, we turn our derivative 
summary inside out and catalog the functions for which we can now find antiderivatives – a 
necessary step if we’re going to solve differential equations.  We expand our tool kit with the 
simplest case of partial fractions to solve the Verhulst (logistic) model of population growth 
and explore how Verhulst, writing in 1840, could predict the US population in 1940. 

Chapter 7: The Fundamental Theorem of Calculus.  The big moment everyone has been 
waiting for – we introduce the integral as an averaging process, e.g., finding average 
temperature over a day or a year, and then relate that to area under a curve.  We approach the 
FTC by exploring the linkage between speedometer and odometer, and then we “derive” the 
theorem by solving a differential equation – given the derivative, what’s the function? – a 
question for which we already know one kind of answer.  The partial sums of the left-hand 
rectangular approximations to area are, in fact, the Euler approximations to the solution of the 
differential equation, and this establishes the connection between antidifferentiation and area.  
Given this connection, it makes sense to introduce the indefinite integral as a notation for 
antidifferentiation. 

Chapter 8: Integral Calculus and its Uses.  This is the second-semester analog of Chapter 4.  
We start with a problem of fundamental physical importance, moments and centers of mass, 
to reinforce the idea of integration as averaging.  We develop numerical methods through 
Simpson’s Rule (as a weighted average of the trapezoidal and midpoint rules), so that no 
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definite integral need remain unevaluated when one is working at a computer.  Then we 
address the basic rules for integration by hand: algebraic and trigonometric substitutions and 
integration by parts.  We close with an elementary look at Fourier analysis, using an 
electrocardiogram as an example. 

Chapter 9: Probability and Integration.  Our model problem in this chapter is reliability 
theory – how long do things last?  The simplest model is the exponential distribution, which 
leads naturally into improper integrals.  Now that students have experienced eight chapters of 
limiting behaviors, it is appropriate to introduce the standard notation for limits (but not the ε-
δ definition, which belongs in a later course).  We also take up other probability distributions 
(e.g., the normal) for which finding a mean or standard deviation may involve proper or 
improper integrals that can’t be evaluated in closed form.  This leads to defining some 
functions (e.g., the error function) by their integral representations. 

Before we describe the last chapter, a brief polemic.  It has become traditional in the US (and 
perhaps elsewhere) to end Calculus II with a chapter called “Sequences and Series”, usually a 
compendium of everything we know short of a real analysis course, and invariably at a much 
higher level of sophistication than the rest of the course.  The argument for doing this is that 
it’s single-variable calculus, and the unstated argument is that it doesn’t fit neatly anywhere 
else.  There doesn’t seem to be an argument that learning all possible convergence tests for 
series of constants is a skill needed by our future scientists and engineers.  In our last chapter, 
we attempt to make the content flow naturally from what preceded it and to focus on skills 
that are or could be useful. 

Chapter 10: Polynomial and Series Representations of Functions.  As the title suggests, our 
emphasis is on representation of important functions, whether approximately by polynomials 
(perhaps very long polynomials) or by “infinitely long” polynomials.  We start with the easy 
ones – exponential and trigonometric – and work up to the error function, using substitutions, 
differentiations, integrations.  As a practical application, we note that it would take too long 
to evaluate the error function by integration, say, on a calculator or in a CAS, but it can be 
evaluated fast enough to graph it by using a relatively short polynomial.  The primary tools 
for testing convergence are the alternating series test (AST) and the ratio test (RT) – and 
often they are the only tools needed.  The first is geometrically obvious, and the second we 
obtain by comparing the tail of a series to that of a geometric series.  Both come with error 
estimates.  For power series, only the RT is needed unless there is a finite radius of 
convergence – and then the AST or comparison with, say, a harmonic series will usually do 
the trick. 

4. Classroom Testing 

Our textbook has been and is being classroom-tested at Hood College in Frederick, 
MD (USA) under the guidance of the third author, who is the lead teacher for calculus.  Hood 
is a private, coeducational, liberal arts college with about 1200 undergraduate students, 
including a significant number of commuter students.  The Project CALC materials have 
been used at Hood, under the leadership of department chair Betty Mayfield, almost from the 
beginning of their development, so it was natural for Hood to try the second edition. 

In the Fall Term of 2006, the online text was used by 70 students in three sections with two 
teachers and four undergraduate teaching assistants (TA’s).  In Spring 2007, 45 of those 
students continued in Calculus II in two sections with two teachers and five TA’s, and 
another 20 students started Calculus I with one instructor and one TA.  In the current term 
(Fall 2007), Calculus I will again have three sections and Calculus II will have one (with both 
continuing and incoming students), and all sections will use the online text. 



 227

The challenges of using this book include getting students to accept an online text, learning 
how to use the text in class, convincing students to actually read the book, developing new 
versions of labs and projects, and coping with editing that was ongoing while the course was 
in progress.  On the asset side of the ledger are the direct links to technology and to outside 
information, the checkpoints and activities with (slightly) “hidden” answers, and the 
opportunity to have a direct impact on the emerging edition. 

At Duke our most recent teaching environment is the Interactive Computer Classroom [1], 
which functions as both laboratory and classroom as needed.  This would be the ideal 
environment for use of an online text.  The teaching environment at Hood is almost as good – 
each calculus section is scheduled simultaneously in a classroom and a lab that are next door 
to each other, allowing the instructor to move the class back and forth as necessary for the 
activity at hand.  The classroom seats 24 at non-movable tables (plus an extra table for TA’s), 
and the lab has 12 computers with two chairs each.  Each room has an instructor’s station 
with computer, document camera, VCR/DVD player, and ceiling-mounted projector.  Each 
section is scheduled for three periods per week of an hour and 45 minutes. 

A typical class day at Hood includes varied activities that might be any mix of discussion of 
the text (sometimes via lecture), working on a lab in pairs or on a project in somewhat larger 
groups, working on individual worksheets (possibly consulting with a neighbor), or writing a 
group report.  Over the course of the year, the Hood classes covered most of the text but 
omitted periodic motion and circular functions in the first semester, as well as Fourier 
representations and some probability theory in the second semester.  Parts of the omitted 
material were covered instead in labs, projects, or worksheets, either from the first edition 
(and eventually to be in the second edition) or of local design. 

Here is our advice to instructors considering adoption of this online text: 

• Be ready and willing to talk with your students about why your class is structured 
this way. 

• Have the students read a bit about math education research, e.g., [2]. 

• Know what you want from your course: what’s the focus? 

• You can’t be all things to all people. 

• Exploration takes time, and there’s no substitute for experience – the students’. 

• Letting the class explore means you don't have complete control over what will 
happen next.  Be flexible. 

• Find ways to find out what your students really know. 

• Work the projects ahead of time! 

• As you teach, keep track of what you do when.  (Some topics in the text are 
introduced at a surface level and revisited as tools become available.) 

• If possible, find and hire TA’s, especially for lab activities. 

5. Previews of Coming Attractions 

Over the course of the 2007-2008 academic year, we will complete the following 
additions and enhancements. 

• Implementation of routine exercises in WeBWorK, a free online homework 
system that features randomly generated and individualized assignments, many 
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ways to ask and answer questions, instructor-controlled numbers of repetitions 
and levels of hints, and automatic grading. 

• An Instructor’s Guide, with inputs from classroom teachers who have used and 
are using the text. 

• Additional CAS options (e.g., Mathematica) 

• Sections on the use and misuse of CAS integration tools (Ch. 8, to replace a first 
edition section on use of tables) and on convergence of a series to the right 
function (Ch. 10). 

• More projects drawn from our first edition text and lab manuals and from the 
Connected Curriculum Project (http://www.math.duke.edu/education/ccp/).  So 
far, we have projects on the spread of AIDS (Ch. 2), on air traffic control (Ch. 4, 
develops ideas of related rates and optimization), and on the area of Crater Lake 
(Ch. 7). 

• Enrichment material – more applications (e.g., the SIR model for spread of 
epidemics, pendulum motion, discrete logistic growth and chaos, the gamma 
distribution) and theory (e.g., the Mean Value Theorem, the logical underpinnings 
of the calculus) 

• Search/Browse/Index capabilities. 

 

References 

[1]  Smith, D. A., 2001, The Active/Interactive Classroom, in D. Holton (Ed.), The Teaching 
and Learning of Mathematics at University Level: An ICMI Study (Dordrecht: Kluwer 
Academic Publishers).  Available online at 
http://www.math.duke.edu/~das/essays/classroom/. 

[2]  Smith, D. A., 1996, Thinking about Learning, Learning about Thinking, in A. W. Roberts 
(Ed.), Calculus: The Dynamics of Change, MAA Notes No. 39 (Washington, DC: 
Mathematical Association of America). Available online at 
http://www.math.duke.edu/~das/essays/thinking/. 

 

 

 

 

 

                                                 
[A] I am referring to the UK Economic and Social Science Research Council (ESRC)-funded seminar series: 
Mathematical Relationships Identities and Participation, 
http://www.lancs.ac.uk/fass/events/mathematicalrelationships/. 
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