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An Analysis of the Reasoning Abilities of Students in the Transition Period 

from Secondary to Tertiary Mathematics  

Dr Trudie Benadé1 & Dr Sonica Froneman2 

Faculty of Natural Sciences: School of Computer, Statistical and Mathematical Sciences 

North-West University (Potchefstroom campus), Potchefstroom, South Africa 

Email: trudie.benade@nwu.ac.za1 

Abstract 

This article reports the results of an empirical study to determine the reasoning abilities 

of a group of first year mathematics students at entrance level at a tertiary institution. In 

the empirical study the questions in the first mathematics test written on tertiary level, 

as well as the students’ performances in the test, were analysed using Lithner’s 

framework. Questions in the test were categorised as imitative (memorised, guided and 

algorithmic reasoning) and creative (local and global) reasoning. Student performances 

were evaluated in accordance with these categories to give an indication of their 

reasoning abilities. The results indicate that these students experienced difficulties 

when answering questions that required creative elements, in contrast with questions 

that were based mainly on memorized or algorithmic reasoning.  

Keywords: mathematical reasoning; creative reasoning; transition from secondary to 

tertiary mathematics; reasoning skills 

Introduction 

The introduction of a new school curriculum in South Africa and the subsequent problems 

that students who followed this curriculum encountered at first year university level, 

refocused attention on the transition from secondary to tertiary mathematics.[1] This 

transition forms part of a student’s overall journey from elementary to advanced 

mathematics. Mathematical reasoning is an important process through which mathematical 

understanding develops. At the entrance level to first year mathematics the formal deductive 
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reasoning of advanced mathematics is not yet required from students. Learners would be 

expected to display mastery in reasoning abilities when they tackle mathematical tasks at 

tertiary level. First year lecturers expect their students to be able to reason creatively; 

implying that they must be able to transfer mathematical knowledge from familiar to 

unfamiliar mathematical contexts. In general mathematical reasoning is not restricted to 

formal proof, but is a way of thinking to produce assertions and reach conclusions and 

includes the thinking done when confronted with ordinary mathematics tasks.[2] Reasoning 

is developed when students are given opportunities to explore on their own and are then 

expected to verify the results of their explorations.[3] This process leads to creative reasoning 

that goes beyond just following strict algorithmic paths or recalling ideas provided by 

others.[2] Creative reasoning implies the application of existing procedural knowledge to 

new situations, and the creation of a new sequence of reasoning, or the recreation of a 

forgotten sequence, to solve novel problems.[4]  

Elementary or school mathematics is rich in opportunities to develop a repertoire of 

reasoning skills and to build connections before entering advanced mathematics courses.[5] 

The ability to reason creatively is one of the critical outcomes of the outcomes-based school 

curriculum in South Africa. Learners emerging from the school system should ‘demonstrate 

an ability to think logically and analytically’ and ‘be able to transfer skills from familiar to 

unfamiliar situations’.[6,p.5] In the Curriculum and Assessment Policy Statement (CAPS) of 

Basic Education in South Africa (DoE, 2011) it is stated that the curriculum is based ‘on 

active and critical learning, encouraging an active and critical approach to learning rather 

than rote and uncritical learning of given truths’. It is clear that the compilers of the new 

school curriculum aimed to prepare learners for a smooth transition to tertiary level. 

The development of creative reasoning at school level is realised by the creation of 

learning environments where learners can use their intuitions to experiment, search for 
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patterns, reason logically, generalise and make conjectures on their own or with others.[6,7] 

However, teachers struggled to come to terms with these changes and when they experienced 

difficulties they tended to fall back on their old ways of teaching.[8] In reality the 

implemented curriculum differs from the intended curriculum.[9] The intention of the school 

curriculum is to encourage reasoning, but in practice the addition of more topics to the 

curriculum has had a negative impact on the type of learning that takes place at school level. 

There is less time to focus on mathematical reasoning and thinking, hence learners focus on 

surface features and neglect the structural features of mathematical problems.[10] The quest 

for good Grade 12(the last year in secondary school) pass rates has contributed to this 

negative trend as the focus on good results resulted in quick-fix approaches where problems 

are solved using a standard method imitated from previous work in order to prepare learners 

for the examination.[11,1]  

The nature of mathematics teaching in secondary schools will influence the ability of 

learners to successfully make the transition to tertiary mathematics courses.[12] Articles on 

the preparedness of first-year students from the new curriculum for tertiary mathematics tend 

to focus on mathematical content.[13,14] Another approach to this problem would be to 

inquire whether first-year students from the new school curriculum are able to solve problems 

that require creative reasoning. To investigate the latter question we searched literature to 

find a scientific framework or model with which to evaluate the reasoning abilities of 

students in a rigorous manner. In this article we discuss the framework of Lithner [2] and 

report on an empirical study in which we have applied this framework to evaluate the creative 

reasoning abilities of first-year mathematics students. 

Conceptual Framework for Evaluating Reasoning Skills 

In general it is difficult to measure reasoning skills, but employing Lithner’s framework 
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enabled us to evaluate reasoning skills based on scientific research. In the framework of 

Lithner [2] mathematical items are classified in terms of creative and imitative reasoning. 

Creative reasoning (CR) indicates that the problem should not be familiar to the students 

from previous encounters. Creativity is associated with the creation of new and well-founded 

task solutions. The characters of creative reasoning are novelty, flexibility, plausibility and 

mathematical foundation. Novelty is where a new sequence of reasoning is created or a 

forgotten sequence is re-created. There are no templates to follow. Flexibility means to apply 

different approaches and adaptations to the situation. Plausibility is used to describe 

reasoning that is supported by arguments that are not necessarily as strict as in proofs. These 

are arguments supporting the strategy choice and motivating why the conclusions are true. 

Guesses, vague intuitions and affective reasons are not considered. There must be a 

mathematical foundation for the reasoning. It means that the argumentation is founded on 

mathematical properties of the components involved in the reasoning. There are two 

subcategories for creative reasoning, namely local creative reasoning (LCR), which includes 

minor local elements of creative reasoning, and global creative reasoning (GCR), which 

includes larger elements of creativity. Problems featuring LCR have no complete solution 

schemes and the reasoning has to be constructed by the students themselves by connecting 

new ideas with existing ideas.  

Imitative reasoning [2] implies copying or following a model or an example from a 

textbook or from earlier task solutions without any attempt at originality. It encompasses all 

reasoning that is based on previous experiences. If teaching is limited to copying or following 

a model or an example, without any attempt at originality, it leads to imitative reasoning. [15] 

Imitative reasoning can be subdivided into memorised reasoning (MR) and algorithmic 

reasoning (AR). The difference between the latter two categories is that memorised reasoning 

is a complete or literal memorisation of the solution, while algorithmic reasoning is the 
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recalling of a prescribed solution procedure and its application to a new data set. MR is 

limited to questions founded on recalling a complete answer, for example to recollect a fact 

or a proof. There are three different versions of algorithmic reasoning [2]: familiar 

algorithmic reasoning (FAR), guided algorithmic reasoning (GAR) and delimiting 

algorithmic reasoning (DAR). The basic notion of each subcategory is the recalling of an 

appropriate algorithm that will guarantee the attainment of a correct answer. An example of 

FAR is when a student/learner connects a differentiation algorithm to a task asking for the 

maximum value of a function without considering the inherent meaning of differentiation. 

GAR occurs when a person’s reasoning is guided by a source external to the task – through 

text or another person. An example is test conditions which include a textbook or a formula 

sheet that can be used to copy a described procedure. DAR is when a student chooses an 

algorithm from a set of algorithms that seemed (correctly or wrongly) to correspond with the 

surface property related to the task. For example: A function 𝑓𝑓 𝑥𝑥  is given and the question is 

to evaluate  ! !!! !!(!)
!

 . DAR will occur if the student chose to determine the 

derivative   lim!→!
! !!! !!(!)

!
. 

The classification of a problem as creative or imitative in nature is not entirely neutral 

and objective, as it is dependent on knowledge of students’ previous history regarding the 

solution of the problem. The main classification involves a distinction between algorithmic or 

memorized reasoning on the one hand, and if creative reasoning is required on the other hand. 

Algorithmic and memorized reasoning is sufficient for solving a task if students can identify 

the task type and carry out the imitation. A question can be classified as requiring memorised 

reasoning if there were at least three tasks or examples in the study material that were exactly 

the same as the question in the test. This specific number, i.e., of at least three examples and/ 

or exercises, was validated by Palm et al. [16] in an earlier study on the basis of research in 

the Cognitive Psychology. A question can be classified as requiring FAR if at least three very 
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similar examples or exercises were given in the study material. Questions that could not be 

classified as either algorithmic or memorised reasoning were classified as LCR or GCR, 

provided that the conceptual knowledge needed to solve them appeared in the study material 

and that it can be reasonably expected that a typical student at a similar level would be able to 

solve the problem. 

Empirical Study 

Purpose 

The purpose of the empirical study was: 

• to use the framework of Lithner to classify the questions of a mathematics test in 

terms of memorized-, algorithmic- and creative reasoning; and 

• to investigate the abilities of a group of students to answer the questions in the 

mathematics test regarding memorized-, algorithmic- and creative reasoning skills. 

Research Design 

The research was undertaken to examine a phenomenon at a specific time without the 

intention to change or modify the situation under investigation. The research methodology 

was descriptive in nature and was implemented in the form of a cross-sectional survey.[17] 

Sample 

The sample for the study was conveniently selected and consisted of all the first year 

mathematics students (n=647) enrolled for the mainstream mathematics module at a 

university in South Africa in a particular year. These students were all schooled according to 

an outcomes-based curriculum. 
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Research Instrument 

The research instrument was the first mathematics test written by the students early in March 

of their first year. The test formed part of the normal assessment of the module and was 

compiled by the lecturers responsible for the module. The questions in the test were based on 

new content which built on work done in secondary school.  

Research Procedure 

The lecturers of the module marked the answer sheets according to a set memorandum. The 

marks that the students obtained for each question and sub-question were recorded in an 

Excel file. The average marks obtained for each question and sub-question were determined.  

Analysis of Data 

The analysis of the questions were based on the method employed by Palm, Boesen and 

Lithner.[16] They used the textbook prescribed at school level as a reference to what students 

have had an opportunity to learn. They acknowledged that one can never access students’ 

complete thinking processes, but the textbook may represent the curriculum, which gives an 

indication of the students’ anticipated learning experience. In the present study we included 

the textbook, manuals, study guides and class work prescribed for the module to get an 

indication of how familiar the problems were to the students.  

After an initial analysis of the test written by the group we identified three constructs, 

namely memorised reasoning (MR), familiar algorithmic reasoning (FAR) and local creative 

reasoning (LCR). The former two, i.e., MR and FAR, are examples of imitative reasoning, 

while LCR is an example of creative reasoning. No items requiring global creative reasoning 

were identified. No guided algorithmic reasoning occurred, as it was not an open book test 

and no formula sheet was provided. These three constructs (MR, FAR and LCR) were 
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employed to analyse the written responses of the students. Marks were recorded and 

descriptive statistics were applied to compare the performances of the students according to 

the three constructs.  

Validity and Reliability 

Validity was established by involving five mathematics lecturers with experience in the 

students’ transition from secondary to tertiary mathematics, in the classification process. The 

classification framework of Palm et al. [16] was explained in detail to all the lecturers taking 

part in the classification process. They first classified the questions individually and then 

discussed their classifications in a group to reach consensus. If consensus on the 

classification of a question could not be reached, the decision of the majority was accepted.  

The statistical reliability of the constructs was measured using Cronbach’s alpha 

coefficient. The results for the three constructs were compared using a t-test to determine if 

there were significant differences in performance on the questions requiring the three types of 

reasoning. A small p–value (<0.05) is considered as sufficient evidence that the result is 

statistically significant. Statistical significance does not necessarily imply that the result is 

important in practice, as these tests are dependent on sample size and have a tendency to 

yield smaller p-values as the size of the data set increases. A better measure is the effect size 

(so-called d value), which is independent of the sample size and is a measure of practical 

significance. It can be understood as a large enough effect to be important in practice and is 

described for differences in means.[18] Cohen (cited in [18]) gives the following guidelines 

for the interpretation of the effect size: small effect 0.2≤ d < 0.5; medium effect 0.5≤ d < 0.8 

and large effect d ≥0.8. 
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Discussion of Results  

This section presents the tables with the questions in the test as well as the average 

percentages per question, as well as the average percentage achieved for each construct. The 

implications of the results of each construct are also discussed.  

Memorised reasoning (MR) 

Questions requiring memorised reasoning are listed in Table 1. These questions required 

students to complete a definition (1.1), define concepts (3.1, 4.1.1 and 4.1.2) and to draw an 

inverse trigonometric graph (6.1). For all these questions there were at least three instances in 

the study material where either the definitions were written out or graphs with the precise 

values were given, hence their designation as memorised reasoning. The Cronbach alpha 

value for this construct was 0.4. A value less than 0.5 indicates that the questions were not 

answered in a consistent way. For example, a student who performed well in question 1.1, did 

not necessarily performed well in the other questions testing this construct. Statistically the 

implication is that one cannot use the average percentage of 69.9% as a measure of this 

construct to compare it with the other two constructs.  

Table 1. Questions and scores based on memorised reasoning (MR) 

MR questions in the test 
Average 
% per 

question 

Average (%) for 
MR 

1.1 Complete the following: 
⎩
⎨
⎧

<

≥
=

0 if  ... 
0 if  ... 

  
x
x

x  87.6 

69.9 

3.1 Define the concept function. 61.8 

4.1.1 Define the following concepts: ... ))( o ( =xgf  

4.1.2 ... ))( o ( 1 =− xff  
    83.5 

6.1 Sketch the inverse of ] 1 ,1[  ,sin −∈xx  46.8 
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Considering the questions separately, the percentages indicate that the students 

performed well in questions requiring memorised reasoning. The exception was question 6.1, 

which yielded 46.8%. A possible explanation is that this question was at the end of the test 

and that some students could not complete the test in the allocated time. According to the 

marking sheets, 37% of students did not attempt this question, which confirms that students 

ran out of time. This trend is confirmed in the analysis of question 6.2 (see next paragraph). 

One could argue that question 6.1 could be deleted from the Cronbach alpha analysis, but on 

subsequent investigation we did not find an improvement in the Cronbach alpha value after 

deletion of question 6.1. 

Familiar algorithmic reasoning (FAR) 

Questions requiring familiar algorithmic reasoning are listed in Table 2. These questions 

required students to solve an inequality (1.2) and to determine values of functions (2.1, 3.2, 

4.2 and 6.2). For these questions there were at least three step-by-step explanations of how to 

get to the solution of similar problems in the study material. The questions in the test were 

not exact replicas, but the algorithms given in the study material could be used for answering 

these questions, hence the classification as FAR and not as MR. The Cronbach alpha value 

for this construct was 0.6, which means that these questions could be considered as a single 

construct and the average percentage of 65.85% could be used in comparison with other 

constructs with an appropriate Cronbach alpha coefficient. This average percentage indicates 

that the students performed well in questions requiring familiar algorithmic reasoning. 

The average percentage of 39.4% for Question 6.2 was less than those of other 

questions in this construct (see, Table 2). Upon investigation we found that 43% of students 

did not attempt this question, leading to the deduction that these students did not have time to 

attempt Question 6.   
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Table 2. Questions based on familiar algorithmic reasoning (FAR) 

FAR questions in the test Average 
% per 

question 

Average % for 
FAR 

1.2 Solve the following inequality and give your answer in  
interval notation: 6 25 <−x  67.6 

65.8 

2.1 Complete: 

2.1.1  rad ... 70 =− o   

2.1.2   o .... 
3

2
=

π   

 

70.7 

3.2 Given:  
⎩
⎨
⎧

−≥

−<+
=

2 ifx        
2 if   1x

)(
x
x

xf   

3.2.1   ... )2( =−f  

3.2.2   ... )4( =−f    

 

77.5 

4.2 Given:  
1

)( and  1)(
+

=+=
x
xxgxxf    

4.2.1 ...   =fD  67.2 

4.2.2   ...   =gD  57.9 

4.2.3 ...     =ο fg  81.8 

6.2 Find the value of the following expression: )
2
1(cos 1 −−  39.4 

 

Local creative reasoning (LCR) 

The remaining questions were classified as local creative reasoning and are listed in Table 3. 

These questions required students to graph an absolute value function (1.3), prove an identity 

(2.2), solve an equation containing reciprocal trigonometric functions (2.3), solve an equation 

containing natural logarithmic functions (5.1) and determine the inverse of a rational function 

(5.2). It must be noted that less than three or even no similar examples of these questions 
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appeared in the study material. The conceptual knowledge needed to solve these questions 

was contained in the study material. Another factor that contributed to this specific 

classification was that the reciprocal trigonometric functions, the absolute value functions 

and the natural logarithms were not part of these students’ school curriculum.[6]  

The Cronbach alpha value for this construct was 0.7, which means that these 

questions could be compared as a single construct. The average percentage of 33.2% 

indicates that the students performed poorly in questions requiring local creative reasoning. 

 

Table 3. Questions based on local creative reasoning (LCR) 

LCR questions in the test  Average 
% per 

question 

Average 
% for 
LCR 

1.3 Graph the following function:  
x
xx

xp
+

=
2

)(  
40.2 

33.2 

2.2 Prove the following identity: 

            θ+θ=θ+θ 2222 csctanseccot  

26.7 

2.3 Find all the values of θ which satisfy the following  

            equation:  ]2 ,0[  ,2csc π∈θ−=θ     

30.9 

5.1 Solve :x  1)1ln()1ln( =−++ xx  22.2 

5.2 Determine the inverse of :)(xf    
12x
1x )(
+

+
=xf  

46.6 

 

Comparison of Constructs Based on Imitative and Creative Reasoning 

The statistical results for the comparison of the constructs of familiar algorithmic reasoning 

and local creative reasoning appear in Table 4.  
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Table 4. Comparison of average scores for FAR and LCR 

Mean for FAR (%) Mean for LCR (%) p-value Effect size 

65.8 33.2 0.000 1.43 

The average percentage of 65.8% for familiar algorithmic reasoning in Table 4 indicates a far 

better achievement than the 33.2% of the local creative reasoning. This difference is validated 

by the statistical analysis. The p-value of 0.000 is less than the 0.05 required for a statistically 

significant difference. The d-value of 1.43 is greater than 0.8, which indicates that the 

difference is also practically significant. The statistical analysis of the first mathematics test 

written confirmed that the average mark for questions requiring creative (or more specifically 

local creative) reasoning were significantly lower than the questions requiring familiar 

algorithmic reasoning and that the difference was significant in practice.  

Summary  

Mathematical reasoning plays a crucial role in the transition from secondary to tertiary 

mathematics. In the context of the transition from secondary to tertiary mathematics the 

interpretation of mathematical reasoning in terms of imitative versus creative reasoning 

provides a useful framework to evaluate students' reasoning skills. In the current study the 

framework of Lithner [2], as implemented by Palm et al. [16] was used to classify the first 

mathematics test written by first year students at the institution in which this study was 

conducted. Furthermore, we classified the students’ written answers in terms of memorised 

reasoning (MR), familiar algorithmic reasoning (FAR) and local creative reasoning (LCR). 

Students appeared to be confident and performed well (average of 66% for FAR) if the focus 

was on procedures that have been encountered before, but they struggled to answer problems 

requiring the transfer of knowledge from a familiar to an unfamiliar context (average 33% for 

LCR). The average for the memorized reasoning was 70%, but the distribution among the 
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students was not consistent, indicating that students did not exhibit a consistent trend when 

learning definitions and theorems.  

Conclusions and Recommendations 

We conclude that first year students at the institution where the current study was conducted 

performed well on questions requiring imitative reasoning, but struggled with questions that 

required creative reasoning. Creative reasoning skills are dependent on deep learning or 

learning with understanding. In the learning process students require more time to reflect on 

the processes of mathematics. There are many opportunities at school level to develop 

reasoning skills, however, deep learning is seemingly impeded by the time allocated to 

additional topics included in the new school curriculum and the drive to achieve good pass 

rates. Lecturers in mathematics want their students to be able to reason creatively, but for the 

majority of students this do not happen automatically. In order to develop creative thinking 

skills at school and tertiary level, students must be encouraged to use trial and error methods 

and to investigate different solution paths for the same problem. This will only come about if 

educators/lecturers teach consciously to assist and motivate students in the process of gaining 

skills to reason creatively. Assessment usually drives change; therefore assessment should 

include opportunities to develop creative reasoning skills. Problems that require students to 

develop their own strategies should be included in assessment, especially formative 

assessment. One proposal is to use the classification of Lithner as a taxonomy for tests and 

examination papers in an attempt to formalise the process of developing creative reasoning 

skills.  

As a result of this study the first-year mathematics lecturers at the institution where 

the research took place adapted their teaching strategies to specifically include tasks that 

require creative reasoning elements. They also substituted Bloom’s Taxonomy of cognitive 
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skills with Lithner’s classification as a taxonomy to set their tests in order to make sure that 

questions from all the reasoning categories are included in the papers. We plan to do a 

follow-up study to investigate the impact of this move on the reasoning skills of the students. 
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Abstract 

Engineering is a highly mathematical field of study with different university courses 

requiring proficiency at different types of mathematics. Engineering dynamics requires 

the skilful use of vectors in various ways and proficiency at vector arithmetic, algebra 

and geometry is of vital importance to incoming students. This paper reports on 

findings from the administering of a vector proficiency assessment instrument across 

two semesters of a dynamics course. Findings suggest that problems requiring use of 

the scalar product embedded within a context are of the highest difficulty level. We 

argue that the geometric role of the scalar product is weakly understood by the majority 

of students, leading to poor performance at any problem requiring more than a basic 

calculation. We suggest that lecturers of engineering mathematics foreground the 

geometric role and that lecturers of engineering courses be aware of the level of 

challenge manifest in these problems. 

Keywords: engineering dynamics; vectors; Rasch analysis; scalar product  

Introduction 

In modern engineering practice, and especially in computational mechanics, vector algebra is 

an indispensable tool for the solution of challenging problems, and, hence, proficiency in the 

algebraic manipulation of vectors is an absolute necessity for all engineering students. For 

this reason it is given great emphasis in first year mathematics courses taken by engineering 

students.  
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By contrast, vector geometry, that is the graphical representation of vectors using 

arrow headed line segments, while far from ignored, receives less emphasis.  In particular, 

vector geometry is typically used for the description of problems, rather than the solution of 

problems, where algebraic manipulation is the preferred method. It could be argued that, 

within the context of typical first-year mathematics problems, vector diagrams, if used at all, 

are a halfway point between the ubiquitous vector arithmetic/algebra and the accurate and 

detailed vector diagrams used elsewhere, such as in dynamics. It is therefore imperative that 

the students grasp what vector geometry they encounter in first year in order to prepare them 

for the more advanced uses of vector geometry later. In this paper we discuss how even that 

minimal geometric understanding is worryingly absent, with serious implications for the 

teaching and learning of advanced vector use. 

The Dynamics Education Research Group (DERG) was established at the University 

of Cape Town (UCT) to investigate a range of educational issues related to the teaching and 

learning of dynamics, of which several are mathematical in nature. One of the avenues under 

investigation is the degree to which students entering a second-year dynamics course retain 

the vector mechanics proficiency which they acquire in first-year mathematics.  In particular, 

we are interested in the difference between the contexts in which students find a given vector 

manipulation to be evident or obscured. 

In preparing for writing this paper, we searched the education literature using several 

databases and search engines and could find nothing other than textbooks and teaching guides 

looking at the teaching and learning of the scalar product. While we stumbled across quite a 

few scholarly treatments of the teaching and learning of the vector (cross) product, the 

literature has no work (or nothing easily found) on the scalar (dot) product [1,2,3]. We 

contend that this gap in the literature exists because the academic teacher’s view of the topic 

is that it is so easily understood and so devoid of complexity that there is little to say. In this 
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paper we show empirically that a view of the scalar product as unproblematic is not correct 

and that students do struggle with using the scalar product in processes considered 

straightforward by the teacher or lecturer. We conclude with some ideas about why the 

students might find the scalar product unexpectedly challenging and offer suggestions for 

teachers of vector algebra and geometry. 

Research methodology 

Instrument and cohort 

A test instrument was designed to assess proficiency at the vector algebra and geometry 

topics covered in the first-year mathematics course. This test was written in two consecutive 

semesters by the students registered for the Mechanical Engineering dynamics course for 

students in their second academic year of study at the University of Cape Town. Ethics 

approval was sought and obtained for the running of this study. The first and second semester 

cohorts consisted of 71 students and 129 students respectively, of whom 63 and 107 

respectively gave consent for their data to be used in the analysis reported in this paper 

(Tables 1 and 2).  

Table 1. Student numbers by Engineering programme 

 Mech Eng Mechatronics Elec-Mech Electrical Totals 

Semester 1 65 6 0 0 71 

Semester 2 98 5 25 1 129 

Totals 163 11 25 1 200 
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Table 2. Students stating consent for data use 

 Gave consent Withheld consent  

Semester 1 63 8 71 

Semester 2 107 22 129 

 170 30 200 

 

Two of the students (both Semester 2 students) who gave consent for their data to be 

included in the analysis performed so well on the test that their results were excluded by the 

statistical software as the test was a poor fit for students of their level of proficiency. 

Therefore the data set finally used in the analysis discussed in this paper consisted of 168 

students.  

The first semester cohort saw an assessment instrument of 29 items. Item 13 in that 

instrument was not well constructed and has been removed from the data analysis. In the 

second semester, the students saw an instrument of 31 items, where Items 1-12 and 14-29 

were identical to the first instrument, Item 13 was a better constructed version of the original 

Item 13 and Items 30 and 31 were new.  

The items were chosen to represent a variety of typical vector topics encountered in 

first-year mathematics, including using the scalar product and the vector product, doing basic 

vector arithmetic, reading vector information off diagrams, calculating moduli, working with 

unit vectors, working with lines and planes and other geometric objects, such as spheres, and 

solving for parameters in vector parametric expressions. In this paper we discuss in detail the 

student responses to two of the scalar product items. We begin by briefly defining and 

contextualising the scalar product as encountered in a typical first-year mathematics course. 
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The scalar product (or dot product) 

Given two vectors ),,( 321 aaaa =!  and ),,( 321 bbbb =
!

, the projection of a! onto b
!

(or, 

alternately, the component of a! in the direction of b
!

) can be calculated using trigonometry 

and vector scaling to give:  

b
b

ba
b

b

a !
!

!!
!

!
!

2

coscos θθ
=  

where θ is the angle between the two vectors [4,5].  It is geometrically valuable to understand 

the factor θcosa! as “the amount” of a! in the direction of b
!

and hence the product 

b
ba !

!
!

⋅θcos turns that “amount” of a!  into a vector quantity. By defining the scalar product as  

θcosbaba
!!!!

=⋅  

the projection expression above becomes 

b
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bab

b

bab
b

ba
b

b

a !
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!!!

!

!!!
!

!!
!

!
!

⋅

⋅
=

⋅
== 22

coscos θθ
. 

Using the law of cosines we can extrapolate from the definition that  

332211 babababa ++=⋅
!! , 

a calculation which is easy to remember and to perform. In fact, this form is so convenient 

that it is often remembered as the definition of the scalar product. Indeed, it is provided as the 

definition of the scalar product in many textbooks [4]. 

Use of the scalar product as part of a larger process, or embedded in a context, is 

usually related to angles, either determining an angle between two vectors, or imposing a 
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condition of orthogonality on a system of vectors since the scalar product of two orthogonal 

vectors is zero.  

There are eight items in the assessment requiring use of the scalar product (see 

Appendix A). Two of those items simply provide two vectors and ask for their product (Items 

1 and 14) and the other six require use of the scalar product as part of a larger process (Items 

6, 7, 13, 21, 22 and 23). Items 6 and 23 ask for the component of a vector in the direction of 

another, both given. Item 21 asks for the distance between a point and a plane, requiring a 

self-chosen vector to be broken into components. Items 13 and 22 ask for the angle between 

two vectors, in both cases vectors which are not given directly and have to be determined 

from provided information. Item 7 requires use of the scalar triple product. We employed the 

Rasch measurement model to engage statistically with the items, to determine which items 

were found to be the most difficult and how students at different levels of proficiency 

responded to the items. 

The Rasch measurement method 

The Rasch measurement model is based on the requirement that measurement in the social 

sciences, including education, should aspire to the rigour of measurement instruments in the 

sciences, such as thermometers or rulers. The model originates with Georg Rasch [6] and has 

been discussed in detail elsewhere. [7, 8]  

The first step in our process was to construct an instrument measuring a single 

construct of interest, in our case vector mechanics. The second was to administer the 

instrument to the study group, in our case second-year engineering students. The data were 

analysed using RUMM2030 software. [9] The items on the test were all multiple choice and 

were all on the single topic of vector mechanics. An important feature of this measurement 
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model is that the “construct of interest” be unidimensional, that is that the instrument is 

asking questions all centred around a single topic. 

Results and discussion 

The Rasch analysis software (RUMM2030) allows the data analyst to understand an 

assessment instrument in many different ways. Four outputs of the software will be included 

in this paper, namely (1) the fit statistics, (2) the item map, (3) the item characteristic curves 

for two of the items and (4) the multiple choice distractor curves for the same two items. To 

augment the statistical analysis, we include data from the students’ rough working of the 

multiple choice items under scrutiny in a bid to understand where and how things are going 

wrong. 

The fit statistics provide measures of the unidimensionality of the instrument under 

scrutiny and the fit of the instrument to the group responding to the instrument. The 

requirement behind the model is that a unidimensional property is being measured and that 

the difficulty level of the items will remain invariant across different cohorts and sub-cohorts. 

Our study is young, having been run in only two cohorts to date, one of them small, so the 

data are still being collected to measure robust invariance; however the fit statistics at this 

point in our journey suggest that the instrument is measuring a unidimensional property and 

that the instrument is an adequate fit to the cohorts. For those accustomed to reading such 

statistics we include some in Table 3. For those not familiar with such fit statistics, simply 

note the “acceptable” rating of unidimensionality, meaning that this test instrument was 

measuring a single construct of interest (vector mechanics) at an “acceptable” level.  
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Table 3. Fit statistics for the current analysis 

Item fit 

residual 

Person fit 

residual 

Chi Square interaction PSI (w/o 

extr.) 

Unidimensionality 

t-tests (95%CI) 

Mean SD Mean SD Value (df) p   

-0.167 1.18

4 

-0.188 0.765 145.07 (96) 0.00092 0.68736 2.7% (acceptable) 

 

One output of the Rasch analysis process is an axis (the item map) which locates on 

the left individuals along a continuum of proficiency with the construct of interest and also on 

the right the items along a continuum of difficulty (see Figure 1). An individual (marked on 

Figure 1 with the × symbol) at the same point on the axis as an item indicates that a student 

of that level of proficiency has a 50% chance of answering an item of that level of difficulty 

correctly. If the item is located lower than the student on the axis, then it is easier for the 

student, and if the item is located higher than the student then the item is more challenging. 

For illustration, Figure 1 indicates that items 14 and 1 (marked as I0001.1 and I0014.1) were 

very easy for all the students. Items 10 and 15 were of moderate difficulty (50% chance of 

getting them correct) for the student with the lowest level of proficiency, that student 

identified as the lowest × on the left hand side of the axis.  

Of particular interest in this paper is the clustering of the items requiring use of the 

dot, or scalar, product. The two items simply asking for the calculation of a scalar product are 

the two easiest items on the test. The other six items requiring use of the scalar product are 

six of the eight most difficult items of the test, as determined by Rasch analysis. We can 

contrast this bimodal behaviour to that of the items involving the vector product. The items 

involving the vector product are spread throughout the central portion of the continuum, more 

challenging than the “basic” scalar product and less challenging than the process-oriented 



 

 
26 

scalar product items. What’s more, the “basic” vector product items (2 and 10) are 

themselves scattered among the spread of more process-oriented vector product items.   

 
--------------------------------------------------------------------------- 
LOCATION          PERSONS     ITEMS [uncentralised thresholds] 
--------------------------------------------------------------------------- 
  5.0                      |  
                           |  
                           |  
                           |  
                         × |  
  4.0                      |  
                         × |  
                           |  
                           |  
                         × |  
  3.0                    × |  
                  ×××××××× |  
                      ×××× |  
                      ×××× | I0022.1  I0023.1   
                      ×××× | I0030.1   
  2.0              ××××××× | I0013.1   
              ×××××××××××× | I0006.1   
                ×××××××××× |  
                ×××××××××× | I0007.1   
            ×××××××××××××× |  
  1.0         ×××××××××××× | I0021.1  I0016.1   
             ××××××××××××× |  
               ××××××××××× | I0020.1  I0005.1  I0024.1   
                 ××××××××× | I0029.1   
                    ×××××× | I0017.1  I0002.1  I0008.1   
  0.0     ×××××××××××××××× | I0031.1  I0026.1  I0028.1   
                 ××××××××× |  
                       ××× |  
                    ×××××× | I0025.1  I0009.1  I0019.1   
                      ×××× | I0004.1  I0003.1   
 -1.0                  ××× |  
                         × | I0015.1  I0011.1   
                           | I0010.1   
                           |  
                           | I0012.1   
 -2.0                      | I0018.1   
                           |  
                           | I0027.1   
                           |  
                           |  
 -3.0                      |  
                           |  
                           | I0001.1  I0014.1   
                           |  
                           |  
 -4.0                      |  
----------------------------------------------------------------------------------- 
            × = 1 Person 
--------------------------------------------------------------------------- 

Figure 1. The item map 

 

Items requiring use of the scalar 

product as part of a larger process 

Items requiring use of the vector 

product as part of a larger process 

(7, 20, 8, 28, 15) 

Items requiring basic vector 

product (2, 10) 

Items requiring basic scalar 

product 
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The fact that all of the items requiring use of the scalar product (other than simple 

calculations) are among the most difficult items on the assessment focusses attention on those 

items. Item 23, in particular, was found to be the most difficult item on the test by the 

students being assessed. Since Items 6 and 23 asked for the same process to be carried out, 

we looked more closely at these two items. In this paper we shall focus on items 6 and 23 

(below, correct answers underlined). See Appendix B for solutions of these two items. 

 

6. Resolve >−−=< 10,5,3a! into components parallel and orthogonal to >=< 4,3,1b
!

. The 

parallel component is 

(A) >< 2,, 2
3

2
1   (B) >< 12,9,3   (C) >−−−< 8,6,2   

(D) >−−−< 4,3,1   (E) >< 4,3,1    

 

23. Resolve kjiv ˆ15ˆ7ˆ2 +−=
!  into components parallel and orthogonal to kjiu ˆ3ˆˆ2 +−=

! . 

The parallel component is: 

(A) kji ˆ12ˆ4ˆ8 +−   (B) kji ˆ3ˆˆ2 +−   (C) kji ˆ3ˆ1ˆ2 −+−    

(D) kji ˆ6ˆ2ˆ4 +−   (E) kji ˆ9ˆ3ˆ6 +−  

 

For each of the item analyses below, we have included the item characteristic curve 

(the ICC) for each item as well as the MCQ distractor curves. The ICC positions a dot for 

each student proficiency quartile (located and indicated on the horizontal proficiency axis) at 

the probability level (vertical probability axis) at the collective probability (or expectation 

value) of students in that quartile answering the question correctly. In an ideal world where 

every student responds perfectly according to his or her proficiency level, those dots would 

lie along the indicated logistic curve. In an utterly random world where every student guessed 
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the answer, the dots would lie horizontally at the probability level of 0.2 (if, as in our case, 

there are 5 distractors per question). The MCQ distractor curves show what expectation value 

each quartile indicated of answering each specific distractor (where A=1, B=2, and so on) to 

the questions.  

ICC and MCQ distractor graphs for Item 23 

“Resolve kjiv ˆ15ˆ7ˆ2 +−=
!  into components parallel and orthogonal to kjiu ˆ3ˆˆ2 +−=

! . The 

parallel component is:” [Item 23] 

 

 

Figure 2. The ICC for Item 23. 

 

The spread of the quartile responses (the quartiles’ proficiencies are indicated by the 

small red bars on the horizontal axis) indicates some guessing, with the lowest quartile 

getting the answer correct more often than expected and highest quartiles less often (Figure 

2).  
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Figure 3. The MCQ distractor graph for Item 23 

 

While A is the correct answer (shown as “1” and the blue line on the diagram above; 

also note the two little stars indicating 1 as the correct answer on the right hand side of the 

graph), option 2 (the red line) is more likely to be chosen by every quartile, with equal 

likelihood indicated for the top quartile (Figure 3). Option 2 (B) is the second vector (

) given in the question, suggesting either that students chose it as a likely 

looking guess, or that they believe that the component of vector v!  in the direction of vector 

u!  is the entirety of vector u! .  

ICC and MCQ distractor graphs for Item 6 

“Resolve >−−=< 10,5,3a! into components parallel and orthogonal to >=< 4,3,1b
!

. The 

parallel component is:” [Item 6] 

 

kjiu ˆ3ˆˆ2 +−=
!
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Figure 4. The ICC for Item 6 

 

This item’s ICC (Figure 4) shows a roughly similar guessing look to that of Item 23’s 

ICC, with the lower two quartiles answering it correctly more often than expected and the top 

two quartiles less often. Nevertheless, this item was answered slightly better than Item 23.  

 

 

Figure 5 .The MCQ distractor curves for Item 6 

 

In Figure 5, the correct answer of C (labelled 3 on the graph, the green line) is the 

most likely answer for the top quartile, but all of the distractors are contenders throughout, 

particularly A (1, blue) and B (2, red). The phenomenon noticed for Item 23, that of the 

second vector given in the question being the answer most popular with the students, is not 

observed here in Item 6; that option would be E (5, pink, on the graph above).  
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Types of errors 

In order to understand what the students were doing when working on these items, we turned 

to looking through their rough work. Some students did their rough work in the margins of 

the question paper, others did it in a booklet provided and collected by the tutors. Since there 

was no stipulated requirement to make working apparent, in only a few cases (see Table 4) 

could working be identified for these two items.  

Table 4. Number of identifiable instances of rough work 

 On question paper In booklet Totals 

Item 6 31 3 34 

Item 23 2 8 10 

Totals 33 11 44 

 

One interesting feature is that far less working was done for Item 23 than Item 6. One 

hypothesis is that the students recognised Item 23 as being very similar to Item 6, 

encountered earlier in the paper. Having found Item 6 to be challenging possibly led them to 

not attempt Item 23 with as much diligence. To test this hypothesis we shall swap the order of 

these two items in the next iteration of this instrument.  

Some of the rough work was so minimal that it is impossible to see where the student 

made an error, for example simply writing a relevant formula and writing nothing further. In 

other cases, however, sufficient working was available to see patterns emerge across the 

cohort. Four types of error were identified, namely (1) using the vector product, (2) drawing 

the vectors in 3-dimensions and failing to find that helpful, (3) being confused as to how to 

use the scalar product and (4) weak skill at doing basic arithmetic.  

Two constraints prohibit us from inferring frequency of error from availability of 

rough work evidence. Firstly, rough work is not available for the majority of the students, for 
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a variety of reasons, and secondly, in several of the cases where rough work does provide 

interesting information the student has not given consent for us to publicise the data. 

Consequently, the examples given below are merely illustrative, not exhaustive and do not 

allow us to discern which errors have greater impact. 

The students whose working is shown in Figure 6 are carrying out a vector product on 

the two given vectors, which indicates a lack of understanding of how to interpret the result 

of a vector product as well as a lack of knowledge of what process to use for the items in 

question.  

 

    

Student 20152043   Student 20152026  Student 20152023 

Figure 6. Vector product error 

 

For exercises such as represented in Items 6 and 23, a two dimensional diagram 

serving as an aid to structuring the calculation correctly is as much as is needed. Students 

proficient with this type of problem might no longer need to draw any diagram as they can 

already “see” in their mind’s eye what the geometric implications of the problem are. Some 

students in their rough work drew 3-dimensional diagrams. Certain students did so and went 

on to correctly answer the questions (falling back on the necessary algebra after drawing the 

diagram). Three dimensional vector sketches are not inherently bad; however they are not 

directly useful either in this context. Any diagram, 3-d or 2-d, might have helped some 

students conceptualise the problem and gain clarity in what algebra to use. Figure 7 shows the 
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diagrams of students who got no further in their working than a 3-d diagram and ultimately 

answered the question incorrectly. 

 

   

Student 20152089  Student 20152030  Student 20152111 

Figure 7. 3-d diagrams with no further progress 

 

A third pattern in the types of error is failure to use the scalar product correctly. In 

Figure 8 below, Student 20152012 has carried out a scalar product and is using the modulus 

of one of the vectors, but has not put these otherwise useful pieces of information together in 

a useful way. (S/he seems to have calculated an angle in degrees as well, although the 

relevance of the 67.2 is unclear). Student 20152100 has carried out a scalar product and 

thereafter there is no apparent progress although the student seems to be trying out other 

calculations as well. Student 20152045 has rather worryingly carried out a version of the 

scalar product, yet has written the result in vector form, that is s/he has written 

)4)(10()3)(5()1)(3( −+−+  as kji ˆ)4)(10(ˆ)3)(5(ˆ)1)(3( −+−+  . That student has then calculated 

the individual vector moduli but does not know what to do with them.  
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Student 20152012   Student 20152100 

 

 

Student 20152045 

Figure 8. Problematic use of the scalar product 

 

Student 20152046 (Figure 9) was one of the few students for whom hand-written 

working was found for both of the items 6 and 23. S/he has used the scalar product correctly, 

but in each case has used it to calculate an angle, not the vector required by the problem. It is 

as if the student recognises the problem format as requiring the scalar product, but then uses 

the scalar product in the only form with which s/he is comfortable, that of solving for an 

angle. 
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Student 20152046 

Figure 9. Problematic use of the scalar product, continued 

 

The final (and sadly commonplace) source of error is an inability to do error free 

mental arithmetic. In Figure 10 this finding is illustrated with one case of a student 

calculating moduli incorrectly (written over the vectors given) and another giving up since 

s/he did not have a calculator handy (for a calculation which did not strictly speaking demand 

one).  

 

Student 20152016 

 

Student 20152037 

Figure 10. Inability to do arithmetic 
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Conclusion 

We ran an assessment based on first-year mathematics vector mechanics. The students being 

assessed were students registered for the second-year engineering course in dynamics. We 

analysed the data using the Rasch measurement method. Analysis of the results drew our 

attention to a number of interesting phenomena, one of which was the surprising difficulty of 

several items involving the use of the scalar (dot) product. Of those six challenging items, 

two were identical in the process demanded, which was the finding of the component of a 

vector in the direction of a second vector, or alternatively, finding the projection of a vector 

onto a second vector.  

Recognising the importance of this process in engineering contexts, such as dynamics, 

we looked more closely at the data available and discerned several facts about these two 

items. 

The item encountered first (6) was analysed as being easier than the second (23). One 

possibility is that Item 23 was avoided (and the answer was either omitted or guessed) as a 

result of the difficulty of Item 6 and hence Item 23’s inherent difficulty was skewed, a 

hypothesis backed up by less rough working being found for the later item. A second 

possibility resides in the fact that the notation used in Item 23 (the unit vector notation – and 

the preferred notation in the dynamics course) was less familiar to the students than the 

parentheses notation in Item 6, backed up by a similar pattern being observed throughout the 

test on other item pairs. Future uses of versions of this assessment instrument will swap the 

order and we shall observe any consequences of that change. Our ongoing research will 

investigate the apparent lack of familiarity with the  

The errors we observed in student rough work included several which suggest that the 

geometric interpretation of the scalar product is poorly grasped, for example using the vector 
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product instead of the scalar product, drawing 3-dimensional diagrams when none are needed 

and using the scalar product to determine an angle when this result was not required. 

As a result of the concerted efforts of the first-year mathematics lecturers, students in 

second-year engineering courses generally show great algebraic proficiency. However, when 

students encounter situations where physical problems are required to be represented using 

vectors they often encounter unexpected difficulties. Furthermore, in certain courses, such as 

second-year dynamics, students generally do not struggle to follow vector based solutions 

presented in class, but subsequently struggle to solve similar problem by themselves. It is a 

common refrain that students prefer to follow an algebraic approach because they struggle to 

‘see’ the geometric interpretation. 

We argue that the geometric role of the scalar product is understood weakly, if at all, 

by the majority of the students. This weak understanding is in spite of the geometric role of 

the scalar product being taught and demonstrated in the first-year mathematics course. The 

item map (Figure 1) suggests that the computational challenge of the vector product is greater 

than that of the scalar product, while using the vector product in a context is less challenging 

than using the scalar product in a context. Perhaps the very simplicity of the final form scalar 

product used for calculations results in an under appreciation of the geometric significance, 

whereas the greater complexity of the vector product provides a cognitive spur for engaging 

with the vector product’s geometric interpretation.  

We suggest to lecturers of first-year engineering and science mathematics that they 

strongly emphasise the geometric role of the scalar product, including exercises whose 

solution require geometric interpretation, and do not allow the simplicity of the arithmetic to 

upstage it. We suggest to lecturers of engineering or science courses which utilise the scalar 

product to be aware of the challenge which scalar product contexts might embody to students. 
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Appendix A Scalar product items in increasing order of difficulty 

The items are ordered here from easiest to most difficult, as determined through the analysis. 

The correct answers are underlined.  

 

1. Evaluate the dot product >−<⋅>< 1,7,31,1,5 . 

(A) 32  (B) 16  (C) 63  (D) 21  (E) 50   

 

14. Evaluate the dot product of kji ˆ4ˆˆ8 +− and kji ˆ2ˆ6ˆ3 −+ . 

(A) 10  (B) 24  (C) 11  (D) 25  (E) 38   

 

21. Find the distance from the point )2,1,3(P to the plane 423 =−+ zyx . 

(A) 71   (B) 14  (C) 147
1  (D) 7  (E) 27

1  

 

7. Determine the volume of the parallelepiped defined by the three non-coplanar vectors  

>−=<>=<>=< 1,3,1,2,1,4,1,1,2 pnm !!! . 

(A) −3  (B) 3  (C) 8  (D) 2  (E) 5   

 

6. Resolve into components parallel and orthogonal to 

. The parallel component is 

(A)   (B)   (C) 

  

(D)   (E)    

 

>−−=< 10,5,3a!

>=< 4,3,1b
!

>< 2,, 2
3

2
1 >< 12,9,3 >−−−< 8,6,2

>−−−< 4,3,1 >< 4,3,1
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13. Two water pipes are connected as shown in the 

diagram. The first pipe runs from south to north and rises 

up with a 20% grade. The second pipe runs from west to 

east and rises with a 10% grade. At the connection, determine the angle θ between the two 

pipes. 

(A) 92.1° (B) 91.1° (C) 90°  (D) 88.9°  (E) 87.5°   

 

22. What is the acute angle between the diagonals linking the corners A, B, C and O of the 

rectangular prism shown? (O is the origin.) 

(A) 45° (B) 90°  (C) 65°  (D) 35° (E) 15°   

 

23. Resolve  into components parallel and orthogonal to . 

The parallel component is: 

(A)   (B)   (C)    

(D)   (E)    

 

kjiv ˆ15ˆ7ˆ2 +−=
! kjiu ˆ3ˆˆ2 +−=

!

kji ˆ12ˆ4ˆ8 +− kji ˆ3ˆˆ2 +− kji ˆ3ˆ1ˆ2 −+−

kji ˆ6ˆ2ˆ4 +− kji ˆ9ˆ3ˆ6 +−
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Appendix B Solutions to Items 6 and 23 

 

6. Resolve >−−=< 10,5,3a! into components parallel and orthogonal to >=< 4,3,1b
!

. 

The parallel component is 

(A) >< 2,, 2
3

2
1   (B) >< 12,9,3   (C) >−−−< 8,6,2   

(D) >−−−< 4,3,1   (E) >< 4,3,1    

 

Let b
!

λ be the parallel component and let c! be the perpendicular component. 

2
bbbba

cba
!!!!!

!!

λλ

λ

=⋅=⋅

+=
 

><−=

><
++

−−
=

⋅
=

4,3,12

4,3,1
1691
40153

2 b
b

bab
!

!

!!!
λ
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23. Resolve kjiv ˆ15ˆ7ˆ2 +−=
!  into components parallel and orthogonal to 

kjiu ˆ3ˆˆ2 +−=
! . The parallel component is: 

(A) kji ˆ12ˆ4ˆ8 +−   (B) kji ˆ3ˆˆ2 +−   (C) kji ˆ3ˆ1ˆ2 −+−  

  

(D) kji ˆ6ˆ2ˆ4 +−   (E) kji ˆ9ˆ3ˆ6 +−    

 

Let u!λ be the parallel component and let c! be the perpendicular component. 

2uuuuv

cuv
!!!!!

!!!

λλ

λ

=⋅=⋅

+=
 

kji

u

u
u
uvu

ˆ12ˆ4ˆ8
14
56

2

+−=

=

⋅
=
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!
!
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Abstract   

Education is a top priority for many parents, initially as their child approaches 

school age and again as high stake examinations are close on the horizon. As the 

child progresses through the educational system, parents can supplement formal 

education in different ways, such as requesting extra homework from the current 

education institution; purchasing publications that target examination style 

questions; internet search for learning resources or seek private tuition. Private 

tuition (also known as coaching, shadow education, or parallel education) may be 

conducted in person as one-to-one, in small groups, or in larger groups in a 

classroom style setting. There are online options available such as self-guided 

learning programs and real-time interaction with tutors. As the uptake of 

employing private tutors is increasing globally, the industry has become one of 

the fastest-growing sectors of the education field. It is surprising that in many 

countries, there is very little regulation and monitoring of this industry given the 

potential income that can be generated. This scoping paper will use qualitative 

data to highlight the drivers behind the demand for private tuition and explore 

regulations and government interventions in the private tuition industry.  This 

paper will define private tuition as any academic assistance rendered outside the 

education institution for a monetary fee. 

Keywords: private tutor; mathematics tutoring; statistics tutoring; regulation of 

industry 

 Introduction 

Education is often a top priority for parents initially, as their child approaches school 

age and again, as high stake examinations are close on the horizon. The learning of 

numbers and letters with the help of parents and siblings may happen in the informal 
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setting of the home before attending kindergarten. As the child progresses through the 

education system, parents can supplement formal education in different ways, such as 

requesting extra homework from the current education institution; purchasing 

publications that target examination style questions; internet search for learning 

resources or seek private tuition. Private tuition may be conducted in person as one-to-

one, in small groups, or in larger groups in a classroom style setting. There are online 

options available such as self-guided learning programs and real-time interaction with 

tutors. As the uptake of employing private tutors is increasing globally, the industry has 

become one of the fastest-growing sectors of the education field. It is surprising that in 

many countries, there is very little regulation and monitoring of this industry given the 

potential income involved. There are many hurdles obstructing academic research into 

private tuition: there is not one universal name for the practice; there are different 

motives and expectations for seeking private tuition; the tutoring assistance can be 

organised through an education institution, private tutoring agency or a sole tutor. For 

the latter two, unlike formal education, there is no obligation to keep records of private 

tuition for educational purposes only for accounting purposes and the taxman. This 

paper will highlight the drivers behind the demand for private tuition and explore 

regulations and government interventions in the private tuition industry.  

Background 

The practice of hiring private tutors is not a new concept. Throughout history there have 

been many famous people including mathematicians who have tutored students. It is 

interesting to note that problems facing parents about the choice and price of tutors 

today have been present since 380 BC. The choice of Aristotle as tutor for Alexander 

the Great according to Merlan [1] was not solely based on qualifications there was an 

element of ‘a friend of a friend’  (although historically there may have been ulterior 
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motives): 

When Philip invited Aristotle to become the tutor of Alexander, primarily he was 

probably motivated not by Aristotle's fame as a philosopher or even by his 

membership in the Academy (although the latter was obviously also a center of 

political opinion). As Philip invited Alexander before the death of Hermias of 

Atarneus, he, as Jaeger proved, in all likelihood invited him as a confidential friend 

of Hermias, whose city-state was to serve as a bridgehead in the invasion of Persia 

planned by Philip.[1] 

The cost of tuition is a major obstacle for many families. There may be rewards 

to gain by paying higher rates for tuition in order to procure the service of the better 

tutors. It appears that De l'Hôpital had this train of thought when he asked Bernoulli to 

tutor him:   

De l'Hôpital was delighted to discover that Johann Bernoulli understood the new 

calculus methods that Leibniz had just published and he asked Johann to teach him 

these methods. This Johann agreed to do and the lessons were taught both in Paris 

and also at de l'Hôpital's country house at Oucques. Bernoulli received generous 

payment from de l'Hôpital for these lessons, and indeed they were worth a lot for 

few other people would have been able to have given them. After Bernoulli 

returned to Basel he still continued his calculus lessons by correspondence, and this 

did not come cheap for de l'Hôpital who paid Bernoulli half a professor's salary for 

the instruction. However it did assure de l'Hôpital of a place in the history of 

mathematics since he published the first calculus book Analyse des infiniment 

petits pour l'intelligence des lignes courbes (1696) which was based on the lessons 

that Johann Bernoulli sent to him.[2] 

Private tuition has morphed from humble beginnings as a little extra help from a 

neighbour or friend into a lucrative worldwide industry, Crotty commented:  

Market research firm, Global Industry Analysts, Inc. (G.I.A.) has released a study 

this past week stating that the global private tutoring market is projected to surpass 

$102.8 billion by 2018. According to GIA, the burgeoning private tutoring market 

is being driven by the failure of standard education systems to cater to the unique 
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needs of students, combined with growing parental desire to secure the best 

possible education for their children in a highly competitive global economy.[3] 

In Australia, The Australian noted a similar pattern in 2011: 

The tutoring industry has grown by almost 40 per cent in the past five years, 

adding around $6 billion to the economy. Nationally 36,100 people now say 

tutoring is their primary job, earning an average $1400 each a week. But the real 

number could be as high as 80,000 because the data does not include teachers 

moonlighting as tutors, or those who are in the tertiary sector. Some education 

critics claim the growth of tutoring is an indictment on the performance of schools, 

but the industry says the main reason is aspirational parents seeking extra 

advantage for their kids. Chief executive of the Australian Tutoring Association 

Mohan Dhall said families were spending billions each year on private coaching. 

"The annual spend on tutor wages alone is over $2.6 billion so the total annual 

value would be in the order of $6 billion," he said. "The Commonwealth 

Government's Jobs Outlook data indicates this market has grown by over 38 per 

cent in the past five years. [4] 

It is, therefore, quite surprising that there is very little regulation of this industry, 

so anyone of any age, with limited to no teaching experience, can offer private tuition 

by utilising innovative marketing techniques. In Hong Kong, for instance, the status of 

some tutors [5] have been elevated to rock star level with television appearances, 

dedicated fan base and their images on billboards, so is it any wonder that high-

achieving students feel tutoring would be an easy way to supplement their income? 

If you want to be a top tutor, it definitely helps if you are young and attractive. 

Students look at your appearance," said Kelly Mok, 26, a "tutor queen" at King's 

Glory, one of Hong Kong's largest tutorial establishments.  Her designer clothes 

and accessories are not just for the billboards; it's how she likes to dress outside 

classes. But she is also careful to add that she wouldn't be in such high demand if 

she could not deliver top grades in her subject, English. [5] 
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Different descriptors and practices of private tuition 

Private tuition has many synonyms leading to confusion when collecting and analysing 

data and comparing studies. Previous literature has described private tuition with terms 

such as shadow education, parallel education, coaching, private lessons, and 

supplementary education. The difficulty lies not only with the many labels given to 

private tuition, but that some descriptors of private tuition share certain qualities but 

relate to a variety of tuition practices. Although not the main theme of this paper, a brief 

overview of the two main labels given to private tuition, shadow and supplementary 

education and the range of practices involved. These descriptions will illustrate further, 

the complexity of this education research area.  

Shadow Education 

Shadow education is known as; parallel education in Greece; private lessons, after 

school support and coaching in France; and Juku and Kwa-woi in Japan and Korea 

respectively. Bray [6] describes shadow education as follows: 

First, private supplementary tutoring only exists because the mainstream education 

system exists; second, as the size and shape of the mainstream system change, so 

do the size and shape of supplementary tutoring; third, in almost all societies much 

more attention focuses on the mainstream than on its shadow; and fourth, the 

features of the shadow system are much less distinct than those of the mainstream 

system. [6] 

Under the umbrella of shadow education, the tuition may be free or fee-paying 

and involve one-to-one tuition, small to large group size, or online programs following 

the curriculum. Extensive research by Bray [7] has noted the challenge created by the 

use of multiple names for private tuition. 
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Supplementary Education 

Supplementary education, the term mainly used in the United States of America, 

appears similar to shadow education. The difference lies that supplementary education 

includes material beyond the curriculum whereas shadow education keeps to the school 

curriculum. Bridglall [8] describes: 

We define supplementary education as the formal and informal learning and 

development enrichment opportunities that are provided for students outside of 

school and beyond the regular school day or year. Some of these activities may 

occur inside the school building but are over and above those included in the 

formal curriculum of the school. [8]  

Supplementary, as the name implies, enhances knowledge learnt in the formal 

education by the introduction of material outside the curriculum to challenge students. 

This includes activities such as learning a language not offered at school or help for 

pupils where English is a second language, singing lessons or playing musical 

instruments and enrichment classes usually for the more academic students. The added 

element of family and other social support systems is an extra element not included in 

the definition of shadow education. 

Whatever term is used for the private tuition, this does not immediately indicate 

the purpose or delivery for tuition. For instance, in Japan, there are different types of 

Juku specialising from remedial, preparatory for tests, accelerated learning for the more 

academic student and drills.[9] The mode of delivery may be face to face, through 

televised live or recorded classes, online via Skype, or via structured online programs 

and so the class size can vary from one student to potentially thousands of students. 

Technology may remove the barriers of distance, location, and time, making private 

tuition more accessible and flexible.      
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Drivers behind the demand for private tuition 

There is not one definitive list of drivers behind the growing demand for private tuition 

as each country has a different education system with assessment procedures allied with 

assorted economic and cultural factors. The intrinsic drivers are closely related to the 

family circumstances, such as household income, student’s situation, and school 

environment. 

Diskin [10] noted that: 

The juncture of trends, that of increased focus on attending school, parents’ work 

commitments, school demands for parent involvement, and more transparency for 

individual school’s testing results have all contributed to the sense of importance 

attached to what a school education can do for the child’s eventual adult life.[10] 

The household income may determine the amount of tuition, though it does not 

deter the pursuit of private tuition for those in a lower income bracket. Education, for 

many people, is seen as an investment for future employment in the same manner as 

banking where every small amount adds to the overall financial pot. Private tuition 

provides an extra boost to future career paths and financial security. 

Depending on the student’s situation, tuition will vary in nature. Absence from 

school due to illness, unable to understand the material in class and homework 

assistance are some of the main reasons put forward for seeking private tuition by 

parents and students. Lewis [11], also, noticed several motives behind seeking tuition, 

amongst them remedial and accelerated tuition. Remedial tuition is where the material 

introduced in the classroom during that week is studied and explained in a manner 

tailored to suit the student’s needs.  This type of tuition lasts for several terms or even 

the whole school year. Parents are usually concerned about the grounding work of 

mathematical foundations and will pay for a tutor so that their child will catch up or 
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keep up with class work. Studies such as Trends in International Mathematics and 

Science Study (also called TIMSS), the Southern and Eastern Africa Consortium for 

Monitoring Educational Quality (SACMEQ) and Programme for International Student 

Assessment (PISA) of the Organisation for Economic Co-operation and Development 

(OECD) have sought information on extra tuition received by students. Bray [7] noted 

the difficulty in ascertaining information as stated before with the cultural differences, 

when asked about private tuition there was no clear indication about reasons, location, 

payment, and mode of delivery.  

Just as acceleration in a car is to progress to somewhere sooner, so accelerated 

tuition aims either to prepare the students for material yet to be taught in school or to 

enhance the material learnt beyond the formal curriculum. This is not the solitary 

domain for the advanced bright student. Parents can be keen for children to be 

challenged and often feel that being ahead of the curriculum is an advantage. Every 

parent boasts about their child’s achievements, both physical and mental, though now it 

appears that kindergarten has lost the realm of play for the role of grade. The Boston 

Globe [12] quoted from a report by on the Boston-based non-profit Defending the Early 

Years organisation: 

What does earlier reading in kindergarten predict for reading proficiency and 

academic success in later grades? Not much, according to the report, which cites 

study findings that by fourth grade, children who were reading at age 4 were not 

significantly better at reading than their classmates who'd learned to read at age 7. 

The report also points out that in Finland and Sweden, kids don't even start formal 

schooling until they are 7 years old. Yet, Finnish and Swedish teenagers regularly 

trounce their American counterparts in international tests of reading, math, and 

science.[12] 

Competition to obtain places at schools where parents feel children will receive 

a better education is fierce. Private tuition may be started before primary education, so 
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the first rung of the education ladder is reached though further tuition may be required 

to continue upwards. It is confusing that private tuition is believed to be needed to gain 

access to perceived ‘better teaching’ and further tuition is still needed to secure future 

education places. A National Assessment Program-Literacy and Numeracy (NAPLAN) 

was introduced in Australia in 2008 which was administered in Years 3, 5, 7 and 9 in all 

schools. The results would show students’ position and ability in relation to national 

benchmarks. The original purpose of NAPLAN was to give a snapshot of students’ 

abilities, identifying weakness and strengths, though now it may be a reason why 

private tuition is sought. These results are published so parents are more aware of where 

students are against benchmark and how schools are performing against each other. 

High-stakes examinations are exactly what the name indicates̶ parents and students 

realise the pressure and importance of the years leading up to and including these 

examinations. Hence, private tuition is seen as essential to securing a tertiary education 

place.[13] The demand for tuition is greater in years of high-stakes examinations.[14] 

Private tuition is not limited to thriving economies and occurs in countries as 

diverse as Bangladesh, Cambodia, France, Canada, and the United Kingdom. All these 

countries have different education systems, both culturally and pedagogically, yet 

private tuition flourishes and ineffective teaching is one reason cited.[15] It is unclear 

whether the reason of ineffective teaching quoted by parents and students relates to lack 

of academic results or misunderstanding of material. 

Extrinsic factors that affect the supply and demand of private tuition are market 

economy, labour market, public education system and cultural issues. Dang and Rogers 

[14] noted the following trends: 

• Countries transitioning to a market economy like China, Vietnam and other 

nations have seen a rise in the rate of private tuition. 
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• Qualifications needed to enter the job market appear to focus more on tertiary 

rather than secondary marks. Preliminary screening processes use university 

degrees as a tool for choosing potential employees hence pressure to obtain 

tertiary places increases. Private tuition is deemed required to achieve this 

education level. 

• A weak education system will make parents look for extra tuition to gain a 

competitive edge for the all-important tertiary education places.  

The last point seems to suggest that private tuition should not be popular in 

countries with a strong public education system. There are many issues and motives for 

seeking extra help in the form of private tuition and so many choices. Commercial 

tutoring agencies regularly advertise fantastic results gained by attending their tutorial 

sessions, though little or any statistical evidence is shown to substantiate these claims. 

The old adage of ‘how much is just too much?’ can so easily be applied to tutoring.[16]   

Government interventions concerning private tuition 

The history of private tuition and efforts to regulate this industry depends on the 

country, so this section will discuss some of the actions taken by governments or local 

communities. The focus is concerned with the role of the government rather than the 

mode or reason for tuition, though a brief description will be given when required.  

Governments mirror the practices of private tuition establishments  

Governments may feel ‘if you cannot beat them, join them’ attitude may be the avenue 

to explore in the regulation of this industry. The introduction of government subsidised 

programmes, similar to the existing available private tuition, may ease the financial 

burden appealing to all socio-economic groups.  
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In France, three types of tuition are available, private lessons, coaching and 

after-school support. The after-school support is provided by non-profit associations and 

concentrates mainly on homework and is funded by either local or national grants or 

assistance with free use of facilities. This type of support is usually situated in working 

class areas with a small or no fee and can be one-to-one through to large groups 

organised by volunteers with the help of teachers. There may be different grade levels 

within the groups. Private lessons and coaching are associated with one-to-one and 

small groups and a substantial fee is charged. The main focus is examination 

preparation, though remedial tuition is offered on a short term basis. 

The government introduced programmes such as ‘educational tutoring’ and 

‘tailor-made support’. Both were supposed to create an environment to assist with 

homework though the latter became more involved with students who had learning 

difficulties. Both had free lessons and a fee paying (much cheaper than that for private 

lessons) programme to take place during the summer holidays. Retired teachers, current 

teachers and students would deliver these lessons either during or outside school hours. 

A reduction in the workforce of all teachers, including some specifically employed in 

this area of tuition, sadly has not helped this initiative to grow.   

In Cyprus, the Ministry of Education and Culture (MoEC) regulates both private 

and state owned ‘frontistiria’ (the name for private tuition establishments) as well as 

private and public schools. These establishments need to comply with certain 

regulations and are inspected by MoEC. It should be noted that the education system in 

Cyprus is controlled by the state so it appears somewhat of a paradox that the state 

creates a state-owned frontistiria. There are many illegal frontistiria operating in Cyprus 

which are not registered and operate as small frontistiria under a cloak of relative 

secrecy. The government has unsuccessfully tried to close these establishments. [17] 
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There are several strands of frontistiria from development of academic skills and 

knowledge; high-stakes examination preparation; overseas high-stakes examinations 

and professional bodies through to languages, arts and sports.[18]  

Family financial incentives from governments 

Voucher schemes have been utilised in Australia, South Africa, United States and 

England for students who do not reach some particular educational benchmark.[19] This 

appears to be a good way of helping students who are falling behind in literacy and 

numeracy. The implementation of this scheme in Australia had some administrative 

problems due to legislation reasons, locating eligible students, and privacy issues 

surrounding the identification of students to non-education departments which led to a 

delay in families being contacted and ultimately a lower than expected uptake. Watson 

[20] found similar problems in other countries: 

Although private tutoring programs have been introduced by governments in 

several countries, there is scant research demonstrating their effectiveness. Studies 

of the implementation of the Supplemental Education Services program in various 

states of the USA have concluded that the program is compromised by inadequate 

funding (ie. insufficient funds for eligible students), low take-up rates (less than 

15-20 %) among eligible students, high attrition rates, and lack of accountability 

for outcomes by the private agencies providing the services (Burch 2007, Rickles 

and Barhart 2007, Sunderman 2007). In Australia, the pilot Tutorial Voucher 

Initiative experienced similar limitations, such as variable take-up rates and lack of 

evidence about sustainable gains in student achievement.[20] 

In France, the government provided state aid for private tuition for tax-exempt 

families and tax relief for others on private tuition thus reducing the costs considerably 

for families.[18] 
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Current regulations concerning private tuition 

This is the most confusing part of private tuition as there are so many discrepancies. 

Many countries have at some stage attempted to ban or reduce private tuition- South 

Korea in 1980; Mauritius in 1991; Cambodia in 1994; and Hong Kong in 1997 [15].  

Total bans have been hard to enforce as it would take many resources to patrol all 

possible venues where private tuition may take place. The ban was lifted in South Korea 

and the private tuition industry is flourishing and has become part of the culture. Many 

governments will espouse the evil of private tuition, though often are indirectly aiding 

by providing venues for free. In many developing countries where teachers’ salaries are 

low and added income is generated by private tuition, teachers are accused of 

deliberately not covering the curriculum fully in regular classes. This accusation could 

be directed at any teacher that works in both mainstream and private tuition regardless 

of pay-rate. 

In Australia, there is little regulation of the industry or any monitoring of 

qualifications. Anyone who works with children in any capacity i.e. basketball coach, 

piano teacher requires a Working with Children Check and a background check by the 

police. It is unclear how many parents take this into consideration when seeking private 

tuition or ask to see these credentials or profession qualifications of private tutors. In 

2005, the Australian Tutoring Association (ATA) was founded as a representative body 

for the private tuition industry. It has no actual powers, membership is voluntary for an 

annual fee and the ATA provides extra help with resources and advertising. The code of 

conduct that it promotes is no more than any tutor would abide by to gain more clients. 

The association is hoping to raise the profile of the industry and gain government 

support. 
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Conclusion 

Education systems vary throughout the world just as the private tuition industry 

operates on different levels. The author has found this a fascinating journey into 

relatively unchartered waters of the private tuition. This paper has only touched on a 

few aspects of the private tuition industry, but has opened more doors of potential 

research. Most research in this paper dealt with primary and secondary education, what 

is the situation of private tuition at tertiary level? Are educational qualifications 

essential to be a good tutor? What regulations, if any, should be applied to private 

tuition and would they vary between primary, secondary and tertiary education levels. 
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Although deciding on the truth value of mathematical statements is an important 

part of the proving process, students are rarely engaged in making such decisions. 

Thus, little is known about the ways in which students’ use mathematical 

reasoning to evaluate mathematical statements. In this study, task-based 

interviews were conducted with engineering students in which they were asked to 

determine the truth value of mathematical statements. Students’ reasoning on the 

tasks will be classified and then further categorized according to the findings of 

current research, with new categories added as needed. This study should 

contribute to our understanding of the ways in which students’ reason when 

dealing with uncertainty in the problem solving process. The findings suggest 

that the factors the participant failed to solve problems include: mathematical 

intuition hindered the constructing of counterexamples, pre-visual and post-visual 

errors mislead students’ visualization. Additionally, this study may suggest ways 

in which educators can assist students in navigating the often difficult process of 

refuting mathematical statements. 

Keywords: intuition; mathematical problem solving; visualization 

Introduction 

Determining the truth value of mathematical statements is an important component of 

the problem solving process. When dealing with uncertainty, mathematicians often try 

to decide on a statement’s truth value with some degree of confidence before investing 

time in a proof or refutation attempt. [1, 2] The proving process is complex and 

encompasses a multitude of reasoning activities including intuitive, informal, and 

formal reasoning. Formal reasoning is based on logic and deduction, and informal 
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reasoning includes reasoning strategies such as visual, example-based, or pattern-based 

reasoning.  

This study hereby attempts to explore the use of intuitive and visual reasoning in 

advanced mathematical problem solving by engineering students in an interview setting. 

Through an analysis of engineering students’ problem-solving protocols and responses, 

I examined the relationship between intuition and visualization in justifying the truth 

value of a mathematical statement. This study explores (a) the ways intuition and 

visualization interact in the decision-making process, and (b) the ways this decision-

making process influences students’ constructions of associated counterexamples for the 

statements.  

Intuitive reasoning  

Intuition is especially important for deciding on the truth value of a mathematical 

statement because it can suggest what is plausible in the absence of a proof [3, 4] and 

“provides a justification for, but is prior to, the search for convincing argument and, 

ultimately, proof”. [5, p.32] In the limited research on intuition in mathematics 

education, researchers have found a variety of types of intuitive reasoning used by 

students and mathematicians to evaluate mathematical conjectures. Inglis et al. [2] 

found that mathematicians’ intuitive support for the truth or falsity of a mathematical 

statement was based on either suspected properties about mathematical objects or 

known relationships between mathematical concepts. Intuition constructs an automatic 

mental representation of a task, taking into consideration task cues, prior knowledge, 

and experience, and operates independently of working memory. [6, 7, 8] 

This study is based on the theoretical framework on intuitions exposed by 

Fischbein. [7, 9] In this work, an intuition is "a representation, an explanation or an 

interpretation directly accepted by us as something natural, self-evident, intrinsically 
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meaningful, like a simple, given fact" .[9,p.10] Fischbein [7] offered two approaches for 

classifying intuitions, one based on roles or origins. In this classification system, 

intuitions can be affirmatory, conjectural, anticipatory, or conclusive. In the case of an 

affirmatory intuition, one affirms or makes a claim. A conjectural intuition is one in 

which an assumption about future events is expressed. Anticipatory and conclusive 

intuitions represent phases in the process of solving a problem. Anticipatory intuitions 

express a preliminary, global view that precedes an analytical solution to a problem. 

Conclusive intuitions summarize in a global, structured vision the solution to a problem 

that had previously been elaborated. Anticipatory intuitions are the cognition that 

implicitly emerges during an attempt at problem solving, immediately after a serious 

search for a problem-solving strategy. Anticipatory intuitions are holistic and associated 

with the feeling of conviction derived from comprehensive reasoning or proving.  

 

Visual reasoning 

Increasing attention has being paid to the centrality of visualization in learning and 

doing mathematics, not just for illustrative purposes but also as a key component of 

reasoning. [10] When considering the role of visual images in structuring intuitions, ‘ it 

is worth keeping in mind that visual representations are not by themselves intuitive 

knowledge’.[7,p.103] Visualization is a critical aspect of mathematical thinking, 

understanding, and reasoning. Researchers argue that visual thinking is an alternative 

and powerful resource for students to do mathematics, [11,12] it is different from 

linguistic, logic-propositional thinking and manipulation of symbols. According to 

Duval, [13] visualization can be produced in any register of representation as it refers to 

processes linked to the visual perception and then to vision. Zimmerman and 

Cunningham [14] contended that the use of the term “visualization” concerned a 
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concept or problem involving visualizing. Nemirovsky and Noble [15] defined 

visualization as a tool that penetrated or travelled back and forth between external 

representations and learners’ mental perceptions. Dreyfus contended that what students 

“see” in a representation would be linked to their conceptual structure, and further 

proposed that visualization should be regarded as a learning tool.[16] 

Visualization involves both external and internal representations, and thus 

following Zazkis et al. [17, p.441], that is, as an “act in which an individual establishes 

a strong connection between an internal construct and something to which access is 

gained through the senses. Such a connection can be made in either of two directions. 

An act of visualization may consist of any mental construction of objects or processes 

that an individual associates with objects or events perceived by her or him as external. 

Alternatively, an act of visualization may consist of the construction, on some external 

medium such as paper of objects or events that the individual identifies with objects or 

processes in her or his mind”. This definition emphasizes that the act of visualization is 

a translation from external to mental (or vice versa) and, particularly, the connection 

made by the individual between the image and the mental. Therefore, visualization has a 

powerful role in promoting understanding both as a support and illustration of symbolic 

results and as a means to solve conflicts between wrong intuitions and right solutions. 

Visualization helps to grasp the hidden meaning of formal definitions. 

Methods and general procedures 

The participants in this study were 21 first-year engineering students at a university of 

technology in Taiwan, who had previously completed courses in derivatives and 

definite integrals. They were selected for convenience: participants were contacted by 

colleagues of the researcher and were recruited on the basis of their willingness to 

participate in the study. The questionnaire contained three mathematical statements, and 
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was designed to assess the students’ abilities to generate counterexamples related to 

basic differentiation and integration concepts.  

Statement 1: If 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 ≥  𝑔𝑔 𝑥𝑥 𝑑𝑑𝑑𝑑!
!

!
! , then𝑓𝑓 𝑥𝑥  ≥  𝑔𝑔 𝑥𝑥 , ∀𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏 . 

Statement 2: If 𝑓𝑓(x) and 𝑔𝑔(𝑥𝑥) are both differentiable and 𝑥𝑥 > 𝑔𝑔 𝑥𝑥 , ∀𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏), then 

𝑓𝑓!𝑥𝑥) > 𝑔𝑔!(𝑥𝑥), ∀𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏). 

Statement 3: If 𝑓𝑓(x) and 𝑔𝑔(𝑥𝑥) are all differentiable and f !(𝑥𝑥) > 𝑔𝑔!(𝑥𝑥), ∀𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏), 

then 𝑓𝑓 𝑥𝑥  >  𝑔𝑔 𝑥𝑥 , ∀𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏 , ∀𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏). 

The students were asked to determine the accuracy of the mathematical statements and 

justify their answers. Data were gathered concerning the mathematical reasoning that 

were used by the participants. 

The data generated from (a) transcripts from the participants’ task-based 

interviews using the think-aloud method, and (b) participants’ written work on the tasks 

in the interviews were analysed using the grounded theory approach.[18] The procedure 

of data analysis involved open, axial, and selective coding processes for qualitative data, 

following Strauss and Corbin, to produce descriptive categories [19]. The data were 

analysed according to uses of intuitive and visual reasoning during the participants’ 

processes of deciding whether a mathematical statement was true or false and 

constructing counterexamples. Additionally, students’ decision-making and 

construction processes were analysed to determine students’ intuitive and visual 

reasoning. I will classify reasoning as intuitive if the student (a) stated that it was a(n) 

intuition, instinct, gut feeling, or first thought; (b) used similarity to make an assessment 

of the task; or (c) was unable to justify the reasoning. Reasoning will be classified as 
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visual if the student (a) introduce diagrams; (b) exhibited an ability to explicitly think of 

pictures or diagrams rather than algebraic representations. 

Findings  

Statement 1 

Four students proposed the converse of the statement 1 and they did not need to give 
any argumentation for this decision. The following episode is one example of many 
similar protocols: 

S14: If 𝑓𝑓 𝑥𝑥  is greater than 𝑔𝑔 𝑥𝑥 , then the integral of 𝑓𝑓 𝑥𝑥  is greater than the 
integral of 𝑔𝑔 𝑥𝑥 . 
Interviewer: How are you going to prove it? 
S14: No. It has been proved in the textbook. 
S14 is convinced, it is so evident for her/him that s/he does not need to propose 
any further argumentation. 

Five participants asserted that statement 1 was correct and generated examples for 
verification; however, most students generated converse statement examples: Two 
students, including S4, made logical errors in generating supportive examples. 

S4：The greater the function is, the larger the integral is. For example, 
𝑓𝑓 𝑥𝑥 = 𝑥𝑥!+1 and 𝑔𝑔 𝑥𝑥 = 𝑥𝑥!, 𝑓𝑓 𝑥𝑥  is larger than 𝑔𝑔 𝑥𝑥 . The integral of 𝑓𝑓 from 0 
to 1 is 4/3, which is also greater than the integral of 𝑔𝑔, 1/3, over the same 
interval.  

Six students used graphical representations to generate examples to support their 
assertions. Although they connected integrals to areas, they did not understand the true 
relationship between the two. A typical response is as follows. 

S6: The integral represents the area under the curve. A greater integral 
corresponds to a greater area [Fig. 1(a)]. Here, the greater integral is represented 
by the higher graph, so the function is greater. 

Five students asserted that the statement was false, but provided a counterexample that 
failed to refute the statement; they also did not understand the relation between integrals 
and areas. 

S9: Integral is area, so a larger integral means a greater area. The area bounded 
by 𝑓𝑓 𝑥𝑥 , 𝑥𝑥 = a, 𝑥𝑥 = b and the 𝑥𝑥-axis is larger than that of 𝑔𝑔 𝑥𝑥  [Fig. 1(b)]. 
However, 𝑓𝑓 𝑥𝑥  is smaller than 𝑔𝑔 𝑥𝑥 . 
Interviewer: The integral value may be negative, but area is positive. 
S9: (10 seconds of silence) If the area above the 𝑥𝑥-axis, then the integral value 
equals to area. If the area below the 𝑥𝑥-axis, then the absolute value of integral 
vale equals to area. (10 seconds of silence) I think I make a mistake, the 
statement is correct. 

Only one students correctly determined the truth value of statement 1. S/he took a trial-
and-error strategy to generate examples to evaluate this statement, until he constructed a 
counterexample: 
S13:  In the graph [Fig. 1 (c)] that I drew, the area that is bounded by 𝑓𝑓 𝑥𝑥 , 𝑥𝑥= a, 𝑥𝑥= b 
and the 𝑥𝑥-axis is larger than that bounded by 𝑔𝑔 𝑥𝑥 , 𝑥𝑥 = a, 𝑥𝑥 = b and the 𝑥𝑥-axis; 
therefore, the integral of 𝑓𝑓 in [a, b] is greater than the integral of 𝑔𝑔 in [a, b]. However, 
the function value of 𝑓𝑓 in the interval [a, c] is smaller than the function value of 𝑔𝑔 in the 
interval [a, c]. Therefore, the statement is incorrect. 
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(a)                   (b)                                (c) 

Figure 1. Supporting examples and counterexamples to statement 1 

 

Statement 2 
Eight students decided that the statement was true, they did not define the range of 
variable and so failed to generate supporting examples. A typical response is from S5. 

S5: If 𝑓𝑓 𝑥𝑥 = 𝑥𝑥!+1 and 𝑔𝑔 𝑥𝑥 = 𝑥𝑥, 𝑓𝑓 𝑥𝑥  is greater than 𝑔𝑔 𝑥𝑥 , and 𝑓𝑓! 𝑥𝑥 = 2𝑥𝑥, 
𝑔𝑔! 𝑥𝑥 = 1, and 𝑓𝑓! 𝑥𝑥  is greater than 𝑔𝑔! 𝑥𝑥 . 
Interviewer: why  𝑓𝑓! 𝑥𝑥  is not always greater than 𝑔𝑔! 𝑥𝑥 ?  
S5: It is true obviously, for example, if 𝑥𝑥 equals to 1, then 2 is greater than 1. 

Six students including S7 provided similar examples but to refute this statement. 
S7: 𝑓𝑓 𝑥𝑥 = 𝑥𝑥! and 𝑔𝑔 𝑥𝑥 = 𝑥𝑥 , 𝑓𝑓 𝑥𝑥  is greater than 𝑔𝑔 𝑥𝑥 , 𝑓𝑓! 𝑥𝑥 = 2𝑥𝑥, 
𝑔𝑔! 𝑥𝑥 = 1, when 𝑥𝑥 is less than 1/2, then  𝑔𝑔! 𝑥𝑥  is greater than 𝑓𝑓! 𝑥𝑥 . 
Interviewer: When 𝑥𝑥 is less than 1/2, is 𝑓𝑓 𝑥𝑥  always greater than 𝑔𝑔 𝑥𝑥 ? 
S7: No. 𝑓𝑓 𝑥𝑥  is not greater than 𝑔𝑔 𝑥𝑥 , 𝑥𝑥 must be less than 1/2, and 𝑥𝑥! must be 
greater than 𝑥𝑥. Oh! I see, for this example, 𝑥𝑥 must be less than zero. 

These students focused on algebraic manipulation, but did not appreciate the importance 
of the domain. Five students used graphical representations and slopes of tangents to 
argue that the mathematical statement was true. The following response is just one 
example of many similar protocols (Fig. 2(a)): 

S8: Since 𝑓𝑓 𝑥𝑥  is greater than g(x), so the graph of 𝑓𝑓 𝑥𝑥  is higher than 𝑔𝑔 𝑥𝑥 , 
and  𝑓𝑓! 𝑥𝑥  must be larger than 𝑔𝑔! 𝑥𝑥 .So…, if 𝑓𝑓 𝑥𝑥  is concave up and 𝑔𝑔 𝑥𝑥  is 
concave down, like this figure. It is obvious that this statement is true. 

Two students used graphical representations and slopes of tangents to argue that the 
mathematical statement was false (Fig. 2(b)). Interestingly, these students all marked 
the domain of the functions on the graphs. For example,  

S12: I think a greater function does not imply a greater derivative. This 
statement is false. Thus, I would like to find a counterexample to prove its 
falsity. The graph of 𝑓𝑓 𝑥𝑥  is above that of 𝑔𝑔 𝑥𝑥 . The graph of 𝑔𝑔 𝑥𝑥  is a straight 
line with a constant slope. However, the slope of 𝑓𝑓 𝑥𝑥  in the interval of (𝑎𝑎, 𝑏𝑏) is 
not always greater than that of 𝑔𝑔 𝑥𝑥 . Therefore, I proved that this statement is 
false. 
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(a)                                                    (b) 

Figure 2. Supporting examples and counterexamples to statement 2 

 

Statement 3 
This statement is the converse of Statement 2. However, the students demonstrated a 
distinct performance in response to these two statements, indicating that Statement 3 
was more challenging to assess than was Statement 2. However, most of the students 
neither noticed the interval nor generated correct examples or counterexamples to verify 
or refute the statement. For example, S10 considered 𝑓𝑓! 𝑥𝑥 = 4𝑥𝑥 and 𝑔𝑔! 𝑥𝑥 =
2𝑥𝑥,  and claimed that 𝑓𝑓! 𝑥𝑥  was greater than𝑔𝑔!(𝑥𝑥), and then provided 𝑓𝑓 𝑥𝑥 = 2𝑥𝑥! and 
𝑔𝑔 𝑥𝑥 = 𝑥𝑥!  and claimed that 𝑓𝑓 𝑥𝑥  is greater than 𝑔𝑔 𝑥𝑥 . S/he did not realize that this 
example did not satisfy the conditions of the statement, ignoring the range of 𝑥𝑥 and the 
constant. Unlike S10, S11 also said that the statement was true, and used algebraic 
representation to generate an example. However, s/he neglected the arbitrary constant c. 
S/he considered 𝑓𝑓! 𝑥𝑥 = 2𝑥𝑥 + 1 and 𝑔𝑔! 𝑥𝑥 = 1, stating 𝑓𝑓! 𝑥𝑥 is greater than𝑔𝑔!(𝑥𝑥), for 
all > 0; 𝑓𝑓 𝑥𝑥 is 𝑥𝑥! + 𝑥𝑥 + 𝑐𝑐;  𝑔𝑔 𝑥𝑥  is 𝑥𝑥 + 𝑐𝑐, and 𝑓𝑓(𝑥𝑥) is greater than 𝑔𝑔 𝑥𝑥 , for all 𝑥𝑥 >0.  

Interviewer: Are these two c the same� 

S11: The same, because all are c. 

Interviewer: Is c a fixed constant? 

S11�No. C can be any constant. 

Interviewer: So these two constant c can be any constant, right? 

S11�Yes, but (10 seconds of silence) I make a mistake, a big mistake, c can be 

any constant, so these two c can be different. It didn’t occur to me. (7 seconds of 

silence) Now I claim this statement is not true, the constant c of 𝑓𝑓 𝑥𝑥  is -100, 

and the constant c of 𝑔𝑔 𝑥𝑥  is 100, and 𝑥𝑥 should between zero and 1. 

There were five students that used graphical representations and slopes of tangents to 
argue that the mathematical statement was true. The following response is just one 
example of many similar protocols: 

S2:  𝑓𝑓! 𝑥𝑥  is larger than 𝑔𝑔! 𝑥𝑥 , so the slope of 𝑓𝑓 𝑥𝑥  is greater than the slope of 
𝑔𝑔 𝑥𝑥 , like this figure (Fig. 3(a)), and 𝑓𝑓 𝑥𝑥  is greater than 𝑔𝑔 𝑥𝑥 . 

These students did not notice that 𝑓𝑓 𝑥𝑥  is not always greater than 𝑔𝑔 𝑥𝑥 . Three students 
successfully generated counterexamples. Unlike S11, S15 noted the effect of the 
constant of integration and the range of the variable; s/he considered “𝑓𝑓! 𝑥𝑥 =
3, 𝑔𝑔! 𝑥𝑥 = 2,  and stated that 𝑓𝑓! 𝑥𝑥 is greater than𝑔𝑔!(𝑥𝑥), claiming that for 𝑓𝑓 𝑥𝑥  is 3𝑥𝑥 +
𝑎𝑎, 𝑔𝑔 𝑥𝑥  is 2 𝑥𝑥 + 𝑏𝑏, 𝑓𝑓 𝑥𝑥  isgreater than 𝑔𝑔 𝑥𝑥  if 0 ≤ 𝑥𝑥 ≤ 10, and b > 10 + a.” Three 
students used graphical representations to generate counterexamples. For instance, S1 
connected the derivatives to the slope of the tangent [Fig. 5(b)]: “the slopes of the 
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tangents of 𝑓𝑓 𝑥𝑥  is greater than 0; the slopes of the tangent of 𝑔𝑔 𝑥𝑥  is less than 0, so 
𝑓𝑓! 𝑥𝑥 is greater than 𝑔𝑔!(𝑥𝑥), but 𝑔𝑔 𝑥𝑥  is greater than 𝑓𝑓 𝑥𝑥  in the interval 𝑎𝑎, 𝑐𝑐! .” As in 
their responses to Statement 3, these students all marked the domain of the functions on 
their graphs. 

 

                                             
(a)              (b)                     

Figure 3. Supporting examples and Counterexamples to statement 3  

 

Discussion and conclusion 

Students’ use of intuition and systematic intuitive errors 

From students’ problem solving behaviour of this study, and from judging the 

mathematical statements, the kind of intuition that can be used for students classified in 

this type of exercise is affirmatory intuition. In planning the solution, students used 

intuition to try to use symbolic and graphical representations. This intuition is classified 

as anticipatory intuition. In implementing the solution successfully, the intuition is used 

is by way of trial and error, the kind of intuition that is used in this type of student 

learning is classified as anticipatory intuition. 

Systematic intuitive errors are errors of intuitive reasoning that cause 

misrepresentations of situations and persist across situations and people. Many students 

made logical errors in deciding the truth value of mathematical statement (e.g., S14). 

According to Fischbein, [7] I can affirm that the (false) equivalence between a 

statement and the converse is an intuition. Moreover, it is important to guide the 

students to the awareness of the structure of their argumentations, so that the knowledge 
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of the non - equivalence between the statement and the converse becomes intuitive 

knowledge. As Fischbein [7, p.81] wrote: 

The training of logical capacities is a basic condition for success in mathematics 

and science education. We refer not only to a formal-algorithmic training. The 

main concern has to be the conversion of these mental schemas into intuitive 

efficient tools that is to say in mechanisms organically incorporated in the mental 

behavioral abilities of the individual. 

The participant of this study also hold the false intuition ' More A-More B ' [20] 

in the statement 1, for example, ' The greater the function is, the larger the integral is ' 

(S4) and ' With a greater integral, the area is greater ' (S6). What is interesting is, 

students do not hold similar false intuition regarding the statement 2 and statement 3 

about the concept of derivative, but about the concept of function. Such as S10, because 

2 is greater than 1, so ' 2𝑥𝑥 is greater than 𝑥𝑥'; because 4 is greater than 2, so ' 4𝑥𝑥 is greater 

than 2𝑥𝑥 '. Differentiation is usually easier than integration, and the representation of 

area is easier than the representation of slope of tangent, according to the problem 

solving processes of the participants. This finding shows the calculation complexity of 

the mathematical statement involved and the intensity of its connection with the 

graphical representation. These observations seem to relate to the inclination of students 

in using intuitive laws. Many systematic intuitive errors can be classified as 

accessibility errors.[8, 21] Accessibility is the ease with which certain knowledge is 

evoked or certain task features are perceived and is a crucial component of intuitive 

reasoning and decision-making.[21] These intuitive errors involve attribute substitution 

[21], when a more readily accessible attribute is substituted in a task for a less readily 

accessible attribute. For example, similarity is an attribute that is always accessible 

because it is processed intuitively.[22] Participants may intuitively notice similarities 
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between a given concept (integral, 2𝑥𝑥, or 4𝑥𝑥) and familiar concepts (area, 2, or 4) and 

substitute more accessible attributes for less accessible ones based on these similarities. 

Students’ visual reasoning 

One of the main heuristic strategies in many calculus tasks is to draw a graph of the 

function involved. However, most of the students had the strong inclination to use 

symbol representation. What is interesting is, even if students used graphical 

representations to generate examples, only a few students could generate correct 

counterexamples. A possible reason is that there is no visual component in their concept 

image of the derivative and definite integral, this makes it difficult for them to “see” the 

statements. This is particularly true for statement 1. It is difficult to find an appropriate 

counterexample, if one can't expand one’s limited concept image. The most significant 

expansion in the evoked concept image of function, in terms of being associated with 

learning events, is the use of visualization in the sense of Zimmermann and 

Cunningham [14, P.3]: “Mathematical visualization is the process of forming images 

(mentally, or with pencil and paper, or with the aid of technology) and using such 

images effectively for mathematical discovery and understanding”. Why is visualization 

important? The examples generated by students show that those using the symbolic 

representation were unable to meet the condition”∀𝑥𝑥 ∈ (a, b)“. On the contrary, the use 

of graphical representation allowed students to control more assumed conditions at the 

same time while generating an example. The global not the local idea that the graph had 

could be associated with the statement, allowing the graph to act as a kind of generic 

example. In other words, visualization allowed students to control larger number of 

conditions simultaneously, while in the symbolic representation students may only 

control one requirement at a time. This finding provided some support to corroborate 
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Fischbein’s [7, p.104] claim that visualization ’not only organizes data at hand in 

meaningful structures, but it is also an important factor guiding the analytical 

development of a solution.’ I suggest that visualization can be more than that: it can be 

the analytical process itself which concludes with a generic solution. 

There are two dangers in visualizing. The first danger in visualizing is that 

figures can induce false conclusions. In fact, in this case (e.g., S8 and S9), it is not the 

figure that is incorrect and that brings us to the false conclusion according to which all 

triangles are isosceles. Rather, what is misleading is the reasoning ‘behind’ the figure. 

These incorrect—propositionally expressed—hypotheses activated an inaccurate figure, 

and this is what brings one to a false conclusion. Nevertheless, this does not mean that 

the figure is incorrect as a figure. Rather it is the role of this figure as the activation of 

some incorrect hypotheses. Therefore, the error is in the informal reasoning which is 

behind the construction of these figures, and not in the figures themselves, or in the 

possibility of putting them to the test. This kind of error in using figures is pre-visual, 

since it depends on wrong hypotheses that are made before the figures are drawn. The 

second danger in visualizing is that figures can mislead our reasoning. This can happen 

when the reasoning is performed on the particular image that represents the 

mathematical statement without considering the consequences implied by it. 

Concerning problem solving performance of S2 and S6, though students know the 

mathematical concepts of derivative and definite integral, they are not capable of 

solving the mathematical statements. These kinds of errors in using figures are post-

visual, since they depend on wrong hypotheses that are made on the drawn figures. 

If we consider examples taken from mathematical problem solving, we see that 

the appeal to visualization is not direct, because it strongly depends on expertise. 

Moreover, discovery by visualization is mediated by the intuition of the generality of 
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the conclusions obtained by means of it. On the contrary it can be fallacious, at least in 

two senses. First, there can be pre-visual errors, if an erroneous hypothesis is made on 

how to draw the figure. Secondly, there can be post-visual errors, if an erroneous 

hypothesis is made on properties of the figure which are not relevant to the 

mathematical problem. Nevertheless, intuition and visualization are interconnected parts 

of a vast web of knowledge that results in the learning and in the application of a 

mathematical problem solving. It is the preservation of these interconnections that 

allows for the intuition of the generality of some conclusion and the consequent 

stabilization of certain beliefs. 
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Abstract   

In this paper I discuss the cultural influences on mathematics education from my 

perspective as a teacher, and from recent migrant students’ perspectives on 

learning in a new country.  I reflect on the assumptions I have made in my 

teaching and learning context that spans three decades, two countries (South 

Africa and New Zealand), one medium of instruction (English) and a shift from 

mono-cultural students to diverse multi-cultural, multi-national and multi-lingual 

students. Today, in New Zealand, there is no ‘elephant’ in classrooms, instead it 

seems to be a whole jungle. This is because my typical class includes: indigenous 

New Zealanders (Maori); immigrants from Europe (mainly from the United 

Kingdom); Pacific Islanders (Polynesians from Samoa, Tonga, and the Cook 

Islands); and more recently, immigrants (from South Africa, Asia, and 

occasionally South America); and I hear at least ten languages. What does this 

mean for me? Does it change my teaching? Have these students come to New 

Zealand to be indoctrinated into New Zealand styles of teaching and learning? 

These questions need to be considered from two perspectives, mine as lecturer, 

and from students as learners. 

Keywords: mathematics education; culture and mathematics; languages and 

mathematics; experiences and mathematics; experiences of immigrant students 

Introduction 

I find that while institutions are keen to get international students they do little to help 

lecturers cope with the resulting diversity; and the students are often reluctant to talk in 

ways that may be critical of the institution. This paper draws from three sources of data; 

from my personal experiences as a student and teacher educated in the South African 
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apartheid era and now teaching in a university in New Zealand, from a research project 

I completed with younger students who were new immigrants, and from literature.  

With the range of nationalities in my multicultural classrooms I have come to 

realize that it is more than language to be considered; language, beliefs, and experiences 

are fundamental factors embedded in one’s cultural construct. These factors will form 

the structure of the discussion of the paper.  

Culture in the mathematics context was unheard of until three decades ago, and 

was first proposed in the 1980s by D’Ambrosio as ethnomathematics.[1] In spite of an 

awareness of ethnomathematics in the sphere of mathematics education research, it 

seems to me that mathematics education practices and attitudes continue to be projected 

as culturally neutral ideologies.    

Methodological approach 

This personal narrative provides a critical reflection on my experiences as a student, and 

on my practice as a teacher and teacher educator. According to Connelly and 

Clandinin,[2] narrative inquiry is the study of humans experience the world.  

As a student in the South African context, I experienced mathematics education 

as if it was culture-free, factual and based on theorems. I manipulated formulae or 

geometric theorems to arrive at a predetermined answer, and measured my success 

when the teacher affirmed my reasoning. I did not consider how indoctrinated I had 

been by the seemingly culturally neutral ideology of mathematics education. It was only 

after the apartheid era in the mid-1990s when students of diverse language and cultural 

backgrounds entered my classroom that I begin to see the importance of culture in 

mathematics education. I subsequently found myself having to reconsider mathematics 

concepts and learning in a context where some students spoke a different language at 

home to the dominant classroom language, and potentially held different beliefs and 
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experiences of mathematics understandings to those presented in the classroom, often 

from a western perspective.   

The New Zealand context presented a similar western approach to mathematics, 

in culturally and linguistically diverse classrooms. New Zealand has an increasing 

ethnic and culturally diverse society with increasing numbers of bilingual and 

multilingual students in the classrooms.[3] My curiosity initiated a small hermeneutic 

phenomenological study of the lived experiences of ten immigrant students in their New 

Zealand mathematics classroom. According to Laverty [4] this approach sets out to 

understand the lived experiences.  The ten students had come from eight different 

countries and from non-English backgrounds. The students were observed between 

three to five times in their classrooms and were interviewed after each observation to 

gain an understanding of their perceptions of their lived experiences. The study was not 

confined to a specific topic in mathematics but varied and included a range of topics 

that were being studied at different times. Although the study was based in a secondary 

school mathematics education context, I believe the experiences of the students are 

transferable to the tertiary level.      

In the tertiary context, while preserving knowledge of the past is important [5] 

the days of the sage on the stage as the ultimate transmitter of knowledge and the gate-

keeping practices of knowledge for academic success may be over. At the heart of our 

teaching and learning classroom should be “enquiry and intellectual debate” [6,p.35] 

where the teacher and students form a partnership in steering multiple learning 

directions by exploring different ideas of mathematics engagement. This notion of 

including diverse ideas initiated my study of literature for alternative teaching and 

learning ideas. All classroom participants bring their own ‘history, social construction, 

knowledge and life experiences’ to the classroom dialogue therefore, teachers are urged 
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not to impose their ideas on the learners [7,p.95] but rather to explore multiple ideas that 

students may have of learning, which are often informed by their own cultural 

background and beliefs.[8]  

Discussion 

The section that follows offers a discussion of language and mathematics education, 

beliefs and mathematics education, and experiences and mathematics education with 

regards to the challenges of multicultural mathematics education. The discussion 

emerges from my gaze on my practice, and from the voices of immigrant students in the 

mathematics education context.   

Language and mathematics education  

As a student I had been taught mathematics as a body of proofs transmitted to me by the 

teacher and mathematics textbooks. This occurred within timetabled blocks allocated 

for algebra and geometry, inclusive of trigonometry and measurement. The fragmented 

series of topics and subtopics were based on the assessment structure of the 

matriculation examinations, not on understanding. The teaching comprised teacher 

telling and teacher demonstration of step-by step methods for students to follow in an 

environment where the language of instruction was taken for granted. This was based 

on the view that mathematics was culture neutral and that all in the classroom shared a 

universal language. ‘A negative number times a negative number gives a positive 

number’ [9,p.145] in any geographical region, was the argument. According to Bishop 

this may be attributed to the decontextualising of ideas for applicability in any context.   

The examples that follow show the fundamental importance of language and 

how it affects mathematical understanding, particularly in an environment where it is 

assumed that once a mathematical term is defined by the teacher, students gain 
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understanding. This ignores the idea that for students for whom the medium of 

instruction is different to their home language, understanding mathematics involves 

thinking between two languages.  The following excerpt shows the language related 

challenges that students sometimes face.[10] Ian (pseudonym), a recent immigrant 

student to New Zealand at the time of the study, shared his experiences of learning 

mathematics:  

If I learnt the maths in Nigeria, I think about it in Nigerian [Igbo], if I learn the 

maths in New Zealand then I think about it in English... the maths we did in 

Nigeria is different than this one here [in New Zealand]… I’m listening but I don’t 

know how to do it because I haven’t done it like that before.  

Language switching also seemed to be a popular strategy employed to cope with 

mathematics content in South African schools as a means for teachers and students to 

communicate their ideas and thinking. According to Setati,[11] language switching 

helped improve student-student and student-teacher interactions in the mathematics 

classroom. These interactions between participants are often framed by their individual 

language structure and culture.[12]  A student’s cultural frame may be dissimilar to the 

classroom culture and this difference has the potential to affect the student’s learning 

success.[13] As suggested by Parvanehnezhad and Clarkson,[14] teachers have an 

important role in facilitating the learning of immigrant students by encouraging them to 

switch between their first language and the dominant classroom language to promote 

understanding. However, a study by Ohia [15] describes the New Zealand classroom as 

being mono-cultural and representative of English attitudes in which non-English 

speaking students are expected to only communicate in English. Perhaps the statement, 

I know how to add them, I didn’t know I had to add them,  made by Ian about 

completing the totals of the rows and columns on a table could have been avoided had 

the instruction been more accessible to him.  
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In addition, Ian’s response to a probability task reiterates Boaler’s,[16] assertion 

that an inability to solve problems may not be due to a lack of mathematical knowledge 

but rather to the student’s interpretations of the demands of the problem. In response to 

a task requiring students to draw a probability tree of all possible gender outcomes of 

children if there were three children in the family, Ian drew a picture including a tree, a 

duck, and three houses. Besides the multilevel language specific difficulties that may be 

indicative in Ian’s response, his drawing and his explanation for the various items in his 

picture may suggest that he was trying to draw from the context of his own worldview 

and experiences, “for the kids… a tree and duck for the kids … to play with … and 

house to live in.” While a statistically flawed response, perhaps it is suggestive of a non-

fragmented or holistic approach within a specific cultural context. As asserted by 

Begg,[17,p.4] western concepts of probability may contradict Asian beliefs of 

probability such as ‘karma’, or religious beliefs associated with probability of the 

gender of a child. From a linguistic perspective the context of the task embedded in 

words that may have been unfamiliar, such as the use of the word ‘gender’, and the use 

of logical connective ‘if’, required a higher level of language skills for understanding to 

have occurred, thus presenting particular difficulty;[10] and perhaps a confusion of the 

context because of the unfamiliar words.[17]  

While electronic dictionaries may be seen by some to be the answer to students’ 

understanding of mathematics in a language that is dissimilar to their spoken language. 

From my experience in the classrooms that involved students engaging in tasks 

involving a locus of points, a student from China looked bemused at his electronic 

dictionary which displayed a picture of a locust. This indicated that direct translations 

are sometimes problematic and confusing in the context of mathematics education and 

may be inconsistent from culture to culture.[17] In addition parents may discourage 
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their children from using electronic dictionaries because they believe that relying on 

dictionaries will inhibit their child’s ability to become proficient in the dominant 

classroom language [10] and this is essential in accessing a ‘better life’.[17,p.3]      

The role of language cannot be overemphasised; it gives students the tools to 

make sense of their learning and become active participants in the mathematics 

classroom. Being unable to communicate with others or to understand people speaking 

is not only frustrating but can be a lonely environment for immigrant students. They 

may feel isolated, invisible and discredited, and according to Davidson and 

Kramer,[18,p.139] for the student it would be like looking “into a mirror” and not 

seeing themselves. Such an environment is bound to stunt academic growth, because 

experiences are manifested from the students’ social, cultural and historical contexts 

and learning occurs from active involvement in the environment.[19] 

While teachers may invite all students to contribute to discussion, international 

students for whom English is not their spoken language, may find this difficult. My 

experience with students in the secondary school context and the university context is 

that initially they tend to prefer to be observers. For Ian, contributing to class 

discussions was a daunting experience, as he pointed out, “I don’t like that… I don’t like 

doing that. Too shy and I don’t like it”. This silence may sometimes be misinterpreted 

as non-participatory attitudes, however, it is important to understand the silent 

behaviour in the context of language and culture. According to Endo [19] students’ 

silence may be attributed to their lack of confidence in conversing in the dominant 

classroom language, and to teachers’ avoidance to engage in conversation with the 

immigrant students because of the fear of not being able to understand the student. 

Other studies found that for some students silence may be a necessary incubatory phase 

to develop language proficiency.[21] Contrary to the study by Endo [21] an earlier 
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study found that teachers may not direct questions at immigrant students because they 

are respectful of this incubatory phase for second language students [21] in the 

mathematics context.  

I have found peer learning to be beneficial for student engagement, and 

particularly effective for second language learners to cope with the language demands 

of the classroom. The benefit of peer learning had previously been noted in the findings 

of Bose and Choudhury,[23] and Parvanehnezhad and Clarkson,[14] who asserted that 

code mixing and code switching play a significant role in students negotiating 

meanings, especially within groups of students that share a common language. 

According to Bose and Choudhury,[23] unlike language switching or code switching, 

code mixing involves conversations in one language with certain words being 

substituted in a second language without interfering with the structure and meaning of 

the original language. Further, it is beneficial for students to have the opportunity to 

work in groups as it promotes their mathematics learning and, for second language 

learners, it develops their first and second language skills.[10] Encouraging students to 

communicate in their first language is powerful in terms of developing mutual respect 

and inclusiveness,[10] especially in our increasingly multilingual classrooms.[24]  

While some educators advocate for the use of first language by students in class, 

many students come from backgrounds that emphasise oral language learning over 

written language. However, while pedagogical practices place students at the centre of 

learning,[25] assessments practice seem enshrined in traditional written forms and do 

not promote oral language communication. Thus, students from predominantly oral 

language cultures may find difficulty in expressing themselves mathematically in 

written forms and this could result in their underachievement.[1] While language in the 

mathematics education context plays an important part in students learning, and their 
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ability and motivation to participate, I believe that as a teacher I can influence the 

learning environment, through the language I use in the classroom and the extent to 

which I invite other language/languages into my classroom.        

Beliefs and mathematics education 

As a student, I did not realise how being exposed to mathematics education from a 

western perspective had impacted on my views and beliefs. My mathematics education 

at school comprised being taught by a teacher who was knowledgeable in the subject, 

reinforcing my understandings that by practising from particular mathematics 

textbooks, would lead to a career in mathematics education and a secure employment 

future.  

My focus is on the underlying cultural beliefs of mathematics education that 

may be apparent in resources that are used in the classroom context. From my 

experience, textbooks seem to have formed an integral part of mathematics education 

especially at secondary school and tertiary levels. Not only is the textbook seen as 

providing the method in solving mathematics problems, it also seemed to affirm the 

teachers approach, thus portraying a singular perspective perhaps of the dominant 

culture. Shan and Bailey,[1] have associated the lack of representation of people of 

colour in mathematics textbooks with the invisibility of non-white students and a hidden 

curriculum.    

The invisibility of students in the context of learning according to Davidson and 

Kramer would be like looking "into a mirror" and not seeing their own 

reflection.[18,p.139] In an earlier study Begg [17] too spoke of Polynesian students who 

saw themselves as ‘outside this knowledge’ when exposed to European schooling. 

Furthermore a study by Baker [26] found that when students do not see themselves in 

the textbook, they view the textbook as an artefact of a foreign culture to which they do 
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not belong. It may also reinforce offensive stereotypical ideas of groups of people [1] in 

statistical data. A New Zealand study by Ohia,[15] attributed a similar lack of 

representation of Maori students in mathematics context to their underachievement 

because of their lack of inclusion and indoctrination towards the dominant English 

worldview. While mathematics texts are now attempting to be more inclusive, they still 

need to present the various cultural contributions that have been made to mathematics 

education. A multiplicative strategy, for example, that may be traced to India and 

mentioned in early Chinese, Arab, and Persian documents [27] has been attributed to 

John Napier who introduced it to the western world. It became popularly known as 

Napier’s bones or multiplication rods. Shan and Bailey [1] advocate for the 

acknowledgement of those mathematicians responsible for the creation of the original 

ideas of mathematics, rather than those who took the ideas to the west.  

My study of immigrant students’ experiences [10] revealed numerous 

differences. In some cultures the teacher is viewed as the fountain of knowledge, 

“listen[ed] to the teacher and … know what to do” and as the authority that should not 

be questioned. Questioning the teacher in certain cultures is seen to be disrespectful and 

a display of the student’s deficiency “When in class I listen to teachers … I can go home 

and ask my mum for help,” because of the high esteem in which teachers are held as the 

‘givers of knowledge.’[26,p.139] This statement suggests that parents of immigrant 

students play a key role.  Furthermore some parents of immigrant students believe that 

their children will benefit from learning mathematics in their host country and at the 

same time being exposed to assessments from their home country, “my mum ask her 

Chinese friend to post Chinese [mathematics] tests to New Zealand then I will write 

them.” Such beliefs may be indicative of the parents assessing the education of their 
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child in the new context and may have implications in the context of international 

students whose tertiary education abroad may be funded by their parents.    

Not only are parental beliefs fundamental in the learning experience of 

international and immigrant students, the social background beliefs that students come 

from may also impact their learning. A study by Li,[28] established that the beliefs of 

students of eastern origins is premised on self-perfection morally, and on learning 

virtues for the purpose of contributing to society, while the beliefs of students from the 

west centred on the mind, the processes of learning and personal excellence. The eastern 

belief of failure is viewed as the student’s deficiency and shameful while from a 

western perspective failure is seen as a stepping stone to success.[10] Understanding 

these worldviews is important to the success of students in the context of mathematics 

education at all levels.  

This idea of student deficiency can extend to students’ views of working in peer 

groups. In spite of social interdependence theory which advocates for peer learning,[29] 

my experience with international and immigrant students in the university context, 

students seem to be that they are hesitant to work in groups with their peers. This notion 

is echoed in other studies that speak of the discomfort that international and immigrant 

students experience associated with their feelings of powerlessness, intimidation and 

isolation in peer group situations.[20]     

The influences of the different beliefs that students bring into the learning 

context has implications for mathematics educators in all sectors of education. The 

challenge is to create a multicultural learning environment which is not about separatist 

and tokenistic practices of occasionally including an origami activity, a Maori 

kowhaiwhai pattern, or basket weaving in a geometry lesson, but rather it is about 

teachers acknowledging various cultural contributions to mathematics education in an 
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environment where students can access their own cultural background to enhance their 

mathematics understandings.      

Experiences and mathematics education 

The habits and experiences that we are exposed to seem to mould the lenses through 

which we view and engage all education, including mathematics. My pedagogical 

practice and assumptions as a mathematics teacher in South Africa often resembled the 

way I had been taught as a student, and not much had changed in the school context 

including the mathematics education context. The changing South African context and 

the different New Zealand context challenged me to rethink my practice, from the 

resources I used to my interactions with the diverse students in my classroom.  

Student diversity included the different backgrounds that they came from and 

their experiences such as language spoken, gender, interests, hobbies, religion, and 

socio-economic status. My first reaction to a student who did not look at me when I 

spoke to them was that they were being disrespectful. This teacher assumption is what 

Begg [17] has referred to as being misconstrued for bad behaviour by teachers. I have 

learnt that for students of Pasifika background, lowering their eyes and not looking 

directly at an adult was a sign of respect. This was also found to be consistent with the 

study by Rosenblum, Goldblatt and Moin [30] who asserted that Ethiopian culture 

promoted silent, non-confrontational and non-assertive behaviours towards adults. I 

began to realise just how blurred my own view was of the numerous cultures, habits and 

experiences that students brought into the learning context.        

Mathematics education in eastern cultures, specifically Chinese culture, 

encourages a silent learning environment.[31] Silence seems to be the prerequisite for 

thinking in this context. According to Han and Scull,[32] the experience of students that 

have been exposed to Confucian heritage cultures is that they should only speak when 
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they are spoken to by the teacher, otherwise student utterances are seen to disrupt the 

flow of teaching.  For students that come from such mathematics education 

environments, the New Zealand classroom of inquiry must seem strange.  Ian, an 

immigrant student from Nigeria in my research, seemed to have transferred his 

experiences of acceptable classroom behaviour to his New Zealand classroom context. 

“I have to be quiet … I’m not allowed to speak to another person,” and from this he 

attributed his inhibition to participate in class discussions and to interact with his peers 

and teacher in his mathematics classroom.[10]  

Another student from my study Babeloo (pseudonym) who emigrated from 

South Africa, found the New Zealand classroom very distracting, “I just don’t 

concentrate that well when people are that loud around me.” While this statement may 

reflect her personal preference to work in a quiet environment, it may also be reflective 

of Kaufman’s,[33] finding that immigrant students are used to working in silence and 

are not familiar with noisy classrooms. This dissimilar experience of international and 

immigrant students could well have implications for their learning at the tertiary level 

where classroom discussions may be perceived as noisy and present an overwhelming 

experience for them.  

 The dissimilar mathematics education experiences that students face may also 

extend to other contexts such as money which could result in a myriad of possible 

solutions. When I reflect on my experiences as an immigrant to New Zealand, I was in 

the habit of mentally converting all my purchases in the New Zealand dollar to the 

South African rand. Similarly one can only imagine the compounding problems that 

immigrant and international students may be faced with when solving contextualised 

problems involving currencies.  
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In addition to students experiences with mathematics learning, it is important to 

note that while many cultures may use the base ten number system, others may use base 

20 or base 60.[34] As averred by Begg,[35,p.3] “Puzzles are useful because they do not 

usually assume a particular way of starting – instead they begin with a situation that 

may be approached in many ways.” The use of certain ideas and concepts may be linked 

to a specific context of reference therefore when students are asked to solve non-

contextualised mathematics questions, their responses may be multiple and dependent 

on their contextual reference at that time. Drawing from my experience in the university 

context that involved looking at multiplication from a Japanese perspective, I realised 

how indoctrinated we might be in the way we think about solving mathematical 

problems. In my diversity class I presented the lines method (Figure 1) to multiply 

numbers and the overwhelming response from my students was that they did not know 

that multiplication could be done in such a different way. This approach shifts one from 

thinking about number manipulation towards a visualising the process. The visual form 

also seemed to have transcended the language barrier.    

Varied ways in which one might interpret non-contextualised sequential ideas is 

particularly relevant to the sports context. Non-contextualised tasks involving students 

to complete the next occurrence in a sequence such as:  

i. 42.1, 42.2, 42.3, 42.4, 42.5, … 

ii. 15, 30, 40, …  

 

  



 

 
86 

 

23 x 41  

 

 

 

 
 

 

 

 

 

 

 

For 23 - Draw 2 lines, space, then 3 lines from 

bottom left to top right. 

For 41 – Draw 4 lines, space, then 1 line from top 

left to bottom right.  

The intersections are counted vertically from left to 

right:         8           2+12          3  

Answer     943 

421 x 35      

 

 

 
 
 

 

 

For 421 – Draw 4 lines, space, 2 lines, space then, 

1 line from bottom left to top right 

For 35 – Draw 3 lines, space then, 5 lines from to 

top left to bottom right.   

      

The intersections are counted vertically from left to 

right:     12     26     13   5 

Answer: 14735 

Figure 1: A Japanese multiplication strategy with lines and intersections 

 

In example (i) the next expected occurrence in the sequence might have been 

42.6 however in the context of cricket the next occurrence would be 43. The number 

43.6 does not occur in the game and the end of the over is signalled by 43, meaning that 

43 overs have been bowled. Furthermore, in light of the recent 2015 international 

Cricket World Cup semi-final match between South Africa and New Zealand, 43 could 

also mean the end of one team’s innings or the end of the match owing to shortened 
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play.  In example (ii) while it could result in a range of responses when considering the 

algebraic rule of the pattern, tennis avid fans or players may be quick to respond with 

any one of the following as the next occurrence: deuce; advantage server; advantage 

receiver; game; set; and match.  While it may be argued that the game context is 

different to the mathematics education context, my point is that the game context offers 

mathematical thinking opportunities and students responses are dependent on their 

familiar and cultural experience, in this case a sporting lens. In my teaching and 

learning environment I found that when students are invited to interpret non-

contextualised learning becomes more powerful, more meaningful, and more multi-

faceted when students bring their own experiences into the context.   

Concluding thoughts 

Differences in international and immigrant students’ experiences in the mathematics 

education classrooms may contribute to incongruities in their understandings a new 

learning context. Begg, Bakalevu, Edwards, Koloto, and Sharma [36] urge mathematics 

educators into the realisation of the different worldviews of teaching and learning, and 

unlike the western phenomenon of partitioning of knowledge other cultures experience 

mathematics education as transcending contexts for its use.  Consequently, mathematics 

education is influenced by the cultural tenets of languages, beliefs and experiences of 

the teachers and the learners.        

From my perspective as a teacher in the university context, and from immigrant 

students’ experiences, I firmly believe that diversity ought to be embraced as an integral 

part of mathematics education. An environment that enculturates the learners within 

their own cultural beliefs, by not attempting to acculturate them as deficits into a foreign 

culture [9] may help alleviate some of the challenges faced by international students and 

provide the platform for multicultural education. Finally, students see their 
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lecturer/teacher as the “‘elephant’ on the delta" who will always win out, but the 

elephant has been influenced by a disruptive small creature such as a mouse!  
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Abstract 

Linear algebra is often regarded as a challenging course to learn and to teach and 

has received much attention in mathematics education research studies. However 

there are limited studies that have been carried out in Africa. This qualitative 

study was exploratory in nature with the purpose of identifying trends in the 

performance of the participant students in selected items based on the concepts of 

determinants, inverse matrices and solution of systems of equations. Twenty 

seven pre-service mathematics teachers from a university in Zimbabwe who were 

studying a course in linear algebra participated in the study. Data was collected 

from the students’ written responses to an assessment instrument and analysed 

using document analysis techniques. The findings reveal that many students had 

low levels of engagement with the concepts and seem to have learnt off certain 

techniques which they applied to solve the problems. The study recommends that 

the university authorities should consider planning further support and 

interventions that would provide opportunities for deeper engagement with the 

concepts. 

Key words: Matrix Algebra, determinants, inverse, systems of equations, APOS,  

Introduction 

Linear algebra, which includes the topic of matrix algebra is often the first mathematics 

course that first year mathematics undergraduate students encounter, since it requires 

limited mathematical prerequisites. Hillel and Sierpinska [1, p.65] argue that, “both the 
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teaching and learning of linear algebra at the university level is almost universally 

regarded as a frustrating experience”. Some of the reasons for the difficulties faced by 

the students are not confined to the content of Linear Algebra, but are a result of the 

transition from elementary to advanced mathematics. The move from elementary to 

advanced mathematical thinking involves a significant transition: that from describing 

to defining, from convincing to proving in a logical manner based on those definitions, 

and from the coherence of elementary mathematics to the consequence of advanced 

mathematics.[2] Research about such difficulties has been documented in many 

countries, but there have been few that have focused on students in Africa. In this study 

we explore some of these difficulties experienced by a group of pre-service students in a 

university in Zimbabwe by focusing on their responses to an assessment in an 

introductory linear algebra course. The research questions guiding this study are:  

1) How do the students perform on selected assessment items in matrix algebra?  

2) What do the written responses of the students reveal about the engagement levels of 

students with the concepts? It is hoped that the identification of these trends can be used 

to inform the design and delivery of courses run in similar situations. 

Literature Review  

Bolgomolny [3] contends that understanding matrix algebra concepts is more than 

performing calculations. It is being aware of how procedures work, developing an 

intuitive expectation of the result without actually performing all the calculations, being 

able to work with variations of algorithms, being able to notice connections and to 

organise experiences.[3] 

Formalism is among the reasons for students’ struggles with linear algebra 

concepts.[4] Formalism entails a wide range of use of notations and symbols to the use 

of structures to represent ideas.[4] Parker [5] found that the quality of language use was 
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more closely aligned with students’ definitional understanding than with their problem 

solving skills. 

Some difficulties in understanding linear algebra are also related to underlying 

misconceptions that are held by students. Misconceptions are systematic conceptual 

errors caused by beliefs and principles in the cognitive structure. Aygor and Ozdag [6] 

in their study investigated misconceptions revealed by undergraduate students while 

solving problems on matrices and determinants. Their results revealed many 

misconceptions which are related to confusion between matrices and the determinant of 

matrices. For example, some students took the relationship det 𝐴𝐴 = − det  𝐵𝐵 (that is the 

determinant of matrix 𝐴𝐴 equal to minus one times the determinant of matrix 𝐵𝐵) to mean 

𝐴𝐴 = −𝐵𝐵 (that is, matrix 𝐴𝐴 equals minus one times matrix 𝐵𝐵). Some student also took 

the relationship det 𝐴𝐴 =  𝑘𝑘 det 𝐵𝐵 (that is determinant of matrix 𝐴𝐴 equal to 𝑘𝑘 times 

determinant of matrix 𝐵𝐵) to mean 𝐴𝐴 =  𝑘𝑘 𝐵𝐵 (that is matrix 𝐴𝐴 equals 𝑘𝑘 times matrix 𝐵𝐵). 

Again some students took the relationship det 𝐴𝐴 + det  𝐵𝐵 (determinant of matrix 𝐴𝐴 plus 

determinant of matrix 𝐵𝐵) to mean 𝐴𝐴 +  𝐵𝐵 (matrix 𝐴𝐴 plus matrix  𝐵𝐵). 

Theoretical framework 

In researching students’ conceptions in mathematics, a theory that has proved to be very 

useful is APOS (action, process, object, schema) theory which describes possible 

cognitive paths taken by students when developing an understanding of mathematics 

concepts. APOS theory is a constructivist theory focusing on individual’s mental 

constructions of mathematical knowledge.[7-9]   

The mental constructions of action, process, object and schema is hierarchical in 

the sense that an action conception develops before a process conception and a process 

understanding can be transformed to an object understanding. An action may be defined 
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as any physical or mental transformation of objects to obtain other objects.[7, 8] A 

process is viewed as a transformation of an object or objects the individual is in control 

of without the need of external stimuli. A constructed process can be transformed in 

several ways, that is, it may be reversed or coordinated with other processes.[7, 8] 

When the individual becomes aware of the process as a totality, and realises that 

transformations can act on that totality, and can actually construct such a transformation 

explicitly, the individual has encapsulated the process into a cognitive object. There 

have been many studies [3, 5, 7, 10‒13] which have conducted research on students’ 

understanding of linear algebra and development of linear algebra using APOS theory. 

Dubinsky [7] argued that research is needed to determine the specific mental 

constructions that a student might make in order to understand linear algebra concepts 

as well as the pedagogical strategies that need to be developed that can lead to students 

making these constructions. For example, Mathews [13] noted that solving a system 

consisting of a single linear equation is easier than solving a system with two or more 

linear equations and this has implications for developing pedagogical strategies. 

APOS theory emphasises the important role that a person’s existing schema of 

mathematics concepts takes on in the construction of new knowledge. Dubinsky [7] and 

Ndlovu [14] pointed that background of mathematical concepts that are not part of 

linear algebra are essential to learn it. Ndlovu [14] argues that a strong foundation in 

concepts such as functions, equations and algebraic reasoning will support the 

development of schema in systems of equations. On the other hand a lack of appropriate 

mental constructions in these prerequisite concepts hinders the development of an 

understanding of concepts such as solutions to systems of equations.  

Methodology 

This study used an interpretative approach which is embodied by an individual concern 
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to comprehend the personal world of human experiences.[15] The study is an 

exploration of the understanding of matrix algebra through interpretation of individual 

responses. The participants were 27 pre-service student teachers who were enrolled on a 

linear algebra course. Data were generated from their written responses to an 

assessment task consisting of seven items, four of which were selected for analysis. 

These items were based on determinants, solutions to systems of equations and inverse 

matrices. The other three items did not test matrix algebra concepts. 

The participants’ written responses were analysed and themes relating to the 

ways in which they worked with and reasoned about determinants, inverse and solutions 

to systems of equations were then identified. This method is an example of the 

application of content analysis which extends to assessment of all types of 

communicative material either structured or unstructured.[15] In addition inductive and 

deductive analyses were used through coding the written responses of the participants. 

After coding, the responses were grouped according to identified categories according 

to a preliminary genetic decomposition. These categories aided in identifying different 

components of the theoretical framework in various types of correct and not correct 

responses. Informed consent was obtained from the participants and further ethical 

procedures were followed according to the university’s protocol. The four tasks appear 

below. 

Results  

We report the results of the various items under the headings of determinants, inverses 

and solutions to system of equations. References to responses by particular students are 

organised by using a number 1 to 27, so S16, for example refers to student number 16 

from the list of students in the class (where the list was not arranged in any meaningful 

manner).  
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Table 1 The four items 

1.	Let  𝐴𝐴 =
1 −2 1
2 −3 4
−1 −1 1

.	Find	

(a)	the	determinant	of	A;	

(b)	𝐴𝐴!!(the	inverse	of	A)	

(c)	Hence,	solve	the	system	of	equations	

																											 𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 = 1	

2𝑥𝑥 − 3𝑦𝑦 + 4𝑧𝑧 = 2	

    −𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧 = 0	

	

3.	 	 (a)	 Let	 A	 be	 a	 non	 singular	 matrix.					

Give	 a	 formula	 connecting	 	 𝐴𝐴!!, det (𝐴𝐴)	

and	𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 .	

(b)	Find	𝑥𝑥	such	that	the		     det 𝐴𝐴 = 0	if	

                           𝐴𝐴 =
1 𝑥𝑥 𝑥𝑥
−𝑥𝑥 −2 𝑥𝑥
𝑥𝑥 𝑥𝑥 3

	

	

	

	

2. Find	the	determinant	of		
	

𝐴𝐴 =
1 2 1 2
3 0 1 2
2
1

1
0

2
2

1
2

		

	

	

4. For	 which	 values	 of	 𝑎𝑎	 will	 the	
following	system	of	equations	have	

															                  𝑥𝑥 + 2𝑦𝑦 − 3𝑧𝑧 = 4	

															                   3𝑥𝑥 − 𝑦𝑦 + 4𝑧𝑧 = 2																

	                   4𝑥𝑥 + 𝑦𝑦 + 𝑎𝑎! − 14 𝑧𝑧 = 𝑎𝑎 + 2	

	

(a)	no	solution,	

(b)	infinitely	many	solutions.	

(c)	Solve	the	equation	for	which	the	system	

of	equations	has	infinitely	many	solutions.	

 

Items related to determinants 

For Item 1(a), 26 out of the 27 students who wrote the test produced a correct response, 

indicating that these 26 students were at least at an action conception on finding 
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determinants of 3×3 matrices. The one student (S8) made an error when evaluating one 

of the minors, 2 −3
−1 −1 . The student wrote −2 − 4 instead of −2 − 3, adding  −1 to 

−3 instead of multiplying.  

For Item 2, there were six students who presented correct responses, while 20 

presented incorrect solutions while one student did not respond. Besides getting an 

incorrect determinant some students used matrix brackets instead of bars when 

evaluating determinants, suggesting that they could not distinguish between the notation 

for a matrix 𝐴𝐴 and that for the determinant of 𝐴𝐴, that is they viewed det (𝐴𝐴) = 𝐴𝐴. The 20 

students who failed to get the correct determinant value were still at an action 

conception of finding determinants. Perhaps it was a bit burdensome trying to work 

with three 3×3 determinants although they managed to get the single determinant of a 

3×3 matrix correct in Item 1(a).  

For Item 3(b) 15 out of 27 students correctly evaluated the determinant of a 3×3 

matrix containing algebraic terms, managing to find the two values of x correctly. These 

students have most likely interiorised the procedure of finding the determinant of a 3×3 

matrix. Ten students gave an incorrect response and two had no response. It is of 

interest that 12 students had managed to evaluate the determinant of the  3×3 matrix in 

Item 1 yet they were unable to evaluate the determinant of a matrix of the same size but 

one whose entries included algebraic terms. Hence these 12 students are at an action 

conception of evaluating determinant of a 3×3 matrix. From 10 incorrect responses, 

four students struggled with simplifying the algebraic expression representing the 

determinant. Six students obtained the correct expression for the determinant but 

displayed misconceptions concerning the use of the square root function. Three students 

wrote 𝑥𝑥! = !
!

 → 𝑥𝑥 = !
!
 , left the negative value, while the other 3 students wrote 
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𝑥𝑥 = ± !
!
= ± !

!
,    effectively applying the square root function to the numerator of the 

fraction only. The results for the items on determinants are summarised in Table 2. 

Table 2 Summary of responses on tasks on determinants 

Item	 Number	 who	 get	

correct	 determinant	

expression	

Number	who	get	

correct	response	

Number	 who	

get	 incorrect	

response	

Number	 with		

no	response	

1(a)	 26	 26	 1	 0	

2	 6	 6	 20	 1	

3(b)	 21	 15	 4	 2	

 

Overall for the items on determinants, of the 26 students who presented correct 

responses for Item 1(a), only 6 produced the correct value of the determinant of the 4×4 

matrix in item 2.  For Item 3(b), there were 21 students who derived the correct 

algebraic expression for the determinant, but for six of them, their misconceptions of the 

square root function stopped them from arriving at a correct value of x. Four others 

attempted the item but did not have the requisite algebraic simplification skills to get 

correct algebraic expression for the determinant. One student did not get correct 

response to any of the Items 1(a), 2 and 3(b) suggesting a very limited conception, not 

even at an action level. The written responses of three students who got all the three 

items correct suggest that they have interiorised the concept of a determinant as a 

process being able to evaluate determinants of matrices of different sizes and solve 

problems involving determinants. 
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Items related to working with the inverse of a matrix 

The students’ responses to Items 1(b), 1(c) and 3(a) matrix are discussed in this section. 

The fact that seventeen students produced correct responses to Item 3(a) suggests that 

their understanding of the inverse of matrices was at process level. They could write the 

correct formula connecting 𝐴𝐴!!,  det (𝐴𝐴) and det 𝐴𝐴 . Three students gave no response. 

The seven students who wrote incorrect response, three illustrated the formula using a 

general 2×2 or 3×3 matrix. Four students gave incorrect versions of the formula such 

as  𝐴𝐴!! = det (𝐴𝐴).adj 𝐴𝐴  and  𝐴𝐴!! = !
!"# ! .!"#(!)

.  S20 wrote 𝐴𝐴!! = det (𝐴𝐴).adj 𝐴𝐴  in 

Item 1(c). S/he tried to use the row echelon method to find the inverse to find the 

solution of equation in Item 1(c) but was not successful. Her/his responses to Item 3(a) 

and Item 1(c) show that s/he has not interiorised the concept of finding an inverse by 

using the adjoint method. 

For Item 1(b), 19 students who managed to get the correct inverse of matrix 

𝐴𝐴 were most likely at process conception. These students calculated all the minors 

correctly, worked out the adjoint of the matrix correctly by transposing the matrix of 

cofactors correctly and then multiplied the adjoint by the reciprocal of the determinant. 

Six out of the 19 students produced correct responses without using matrix brackets and 

just inserted the brackets in the final answer so they have challenges in matrix notation.  

Of the 8 students who failed to get a correct response, one failed to calculate the 

correct determinant but managed to get the correct adjoint matrix of 𝐴𝐴. Seven students 

did not evaluate some of the minors correctly, leading to a wrong matrix of cofactors. 

These students’ slips, [13, 14] suggest that they were responding to external prompts, 

and are operating within an action conception. In terms of Item 1(c) 18 students manage 

to get the correct solution to the system of equations using the inverse matrix method. 

From the nine students who wrote incorrect response, one of whom did not complete his 
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work. Eight students arrived at an incorrect solution because they used an incorrect 

matrix, say 𝐾𝐾 (for the purpose of this discussion) instead of the correct  𝐴𝐴!! (answer to 

Item 1(b)). It was interesting that 7 of these students wrote the first step as 𝐾𝐾𝐾𝐾 =  𝐾𝐾. 𝑏𝑏 

where b = 
1
2
0

    and continued in the next step to 𝐼𝐼!. 𝑥𝑥 = 𝐾𝐾. 𝑏𝑏, where x=
𝑥𝑥
𝑦𝑦
𝑧𝑧

  and I3 is 

the 3× 3 identity matrix.  The students assumed that the product (𝐾𝐾𝐾𝐾) of their matrix 𝐾𝐾 

with matrix 𝐴𝐴 was the identity matrix which is a necessary result required in the 

procedure. The response of S19 is as follows: 

1
8

1 1 −5
−6 0 −2
−5 −1 1

1 −2 1
2 −3 4
−1 −1 1

 =
1
8

1 1 −5
−6 0 −2
−5 −1 1

1
2
0

 

                
1 0 0
0 1 0
0 0 1

𝑥𝑥
𝑦𝑦
𝑧𝑧
=
1
8

1 + 2
−6 + 0
−5 + 2

 

                   
𝑥𝑥
𝑦𝑦
𝑧𝑧
=

3
8
−3
4
−7
8

 

                                                                              𝑥𝑥 = !
!

     𝑦𝑦 = !!
!

       𝑧𝑧 = !!
!

 

The student used an incorrect matrix in the matrix product in the first step, 

instead of using (𝐴𝐴!!. 𝐴𝐴), and continued, assuming that the product would still yield the 

identity matrix. S/he might have not known the uniqueness property of inverses. This 

error was found in seven responses. They did not find it necessary to check that their 

matrix was actually 𝐴𝐴!! since 𝐾𝐾 ≠ 𝐴𝐴!!. Thus it is clear that S19 and the others just 

carried out the steps in the algorithm without having interiorised them into a process. 

There was one student (S3) who arrived at the incorrect inverse matrix in Item 

1(b) and did not continue in the same manner as the seven students described above. In 

her second step she multiplied the two matrices 𝐾𝐾 and 𝐴𝐴 and did not get the identity 
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matrix. The student then continued solving the system of equations that she was left 

with (𝐾𝐾𝐾𝐾 =  𝑏𝑏, where               𝑥𝑥 =
𝑥𝑥
𝑦𝑦
𝑧𝑧

 and 𝑏𝑏 =  
1
2
0
). Hence s/he continued using the 

row reduction method to find the value of x, y and z in her system of equations, 

effectively mixing up the algorithms. The student S3 wrote:  

                                          
1
8

1 1 1
−6 2 −3
−5 3 1

1 −2 1
2 −3 4
−1 −1 1

=
1
8

1 1 1
−6 2 −3
−5 3 1

1
2
0

 

1
8

1 + 2 − 1 −2 − 3 − 1 1 + 4 + 1
−6 + 4 + 3 12 − 6 + 3 −6 + 8 − 3
−5 + 6 − 1 10 − 9 − 1 −5 + 12 + 1

𝑥𝑥
𝑦𝑦
𝑧𝑧
=

1 + 2 + 1
−6 + 4 + 0
−5 + 15 + 0

 

                                                                         

!
!

!!
!

!
!

!
!

!
!

!!
!

0 0 1

𝑥𝑥
𝑦𝑦
𝑧𝑧
=

3
−2
10

 

The student continued with the solving the system. 

𝑧𝑧 = 10       
1
4 𝑥𝑥 −

3
4𝑦𝑦 +

3
4 𝑧𝑧 = 3    

                                          
1
4 𝑥𝑥 −

3
4𝑦𝑦 = −

9
2        

                                     𝑥𝑥 + 9𝑦𝑦 = 8 

                                                                          𝑦𝑦 =
70
21 ,    𝑥𝑥 =

−86
7  

S3 did not consider going back to correct her answer in Item 1(b) when her 

identity matrix did not materialise in step 3, but continued with her own contrived 

algorithm.  This indicates that the student did not understand the solution method very 

well. In summary the results for the three questions related to inverse matrices are in 

Table 3. 
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Table 3 Summary of results for items based on inverse of a matrix 

Item	 No	correct	 No	incorrect	 No	Blank/incomplete	

1(b)	 19	 8	 0	

1(c)	 18	 8	 1	

3(a)	 15	 8	 3	

Overall in the items on matrix inverses, 12 students provided correct responses 

to all three questions. From the 17 who managed to write the correct formula connecting 

𝐴𝐴!!,  det  𝐴𝐴  and adj  𝐴𝐴 , eight did not get the correct solution for the system of 

equations using the inverse matrix method and nine managed to get the correct solution 

for Item 1(b) and 1(c) and are at action conception. Thus a person who can reproduce a 

formula may not necessarily be able to carry out the procedure completely. The data 

also provides evidence that the reverse is true. There were seven students who failed to 

write the correct expression for Item 3(a), but six of them produced the correct inverse 

for Item 1(b) and the correct solution of the system of equations in Item 1(c) using the 

inverse matrix method. This shows that even though these students could not express 

the relationship in words, they were able to carry out the procedure, suggesting that 

their engagement with the concept was on an action level. The steps were done as a 

series of externally directed transformations and the concept of inverses had not been 

interiorised into a process. A process level of engagement with the notion of inverse 

would have entailed an understanding of how the procedure was linked to properties of 

the inverse. There were 12 students whose written responses suggest that they are 

working at a process level of the notion of inverse. 

Results on solutions of system of equations 

For item 4, there were 17 students who struggled with row reduction and algebraic 
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manipulation. Ten out of the 27 students were able to reduce the augmented matrix 

correctly to echelon form indicating that they at least exhibited action conceptions. Of 

these, seven students were unable to make the deduction from the last row,  (0 0  𝑎𝑎! −

16 ∶ 𝑎𝑎 − 4) about the values 𝑎𝑎 for which the system would have no solution or 

infinitely many solutions. These students had problems in distinguishing the necessary 

conditions for the system to have no solution, a unique solution or an infinitely many 

solutions. For Item 4(a), three students presented correct responses, six did not give any 

response and 18 gave incorrect responses.  Eleven out of 18 students revealed 

difficulties with algebraic manipulation when reducing row three which involved 

unknowns as coefficient of 𝑎𝑎 and the constant. For example S5 wrote: 

1 2 −3       ⋮ 4
3 −1 5             ⋮ 2
4 1 𝑎𝑎! − 14           ⋮ 𝑎𝑎 + 2

𝑟𝑟! → 𝑟𝑟! − 3𝑟𝑟!,𝑟𝑟! → 𝑟𝑟! − 4𝑟𝑟! 

1 2 −3       ⋮ 4
0 −7 14             ⋮ −10
0 −3 𝑎𝑎! − 2           ⋮ 𝑎𝑎 − 14

𝑟𝑟! → 𝑟𝑟! − 3𝑟𝑟!, 

 
1 2 −3      ⋮ 4
0 −7 14             ⋮ −10
0 0 7𝑎𝑎! − 56          ⋮ 7𝑎𝑎 − 68

  

              7𝑎𝑎! − 56 = 7𝑎𝑎 − 68 

    7𝑎𝑎! − 7𝑎𝑎 + 12 = 0 

                          𝑎𝑎 = 2 2, −2 2, !"
!

 

The seven students who reduced the matrix correctly to row echelon form but 

had problems with deducing the necessary conditions for a system to have no solutions 

and linking that condition to the particular matrix in row echelon form are likely to be 

operating at an action level. For part (b) two students had correct responses, six did not 

present any response and 19 students produced incorrect responses. For part (c) seven 

students who gave correct responses are most likely on a process conception, six gave 

no response and 14 had incorrect responses. Five out of the seven students with correct 
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answers just wrote zeros in the last row and then found the solution of the system of the 

equation using parameters. For example S5 was one such student who had an incorrect 

response for Item 4(b) but managed get a correct response for Item 4(c). S5 wrote: 

                             
1 2 −3 ⋮ 4
0 −7 14       ⋮ −10
0 0 0    ⋮ 0

 

 
Let                     −7𝑥𝑥! + 10𝑥𝑥! = −10 
                                          7𝑥𝑥! = 10 + 14𝑥𝑥! 

                                                         𝑥𝑥! =
!"!!"!!

!
  Let  𝑥𝑥! = 𝑡𝑡 

 
                                                𝑥𝑥! =

!"!!"!
!

 

Hence even though these five students presented correct answers to Item 4(c) 

their engagement with the concept of systems of equations was at an action level. Three 

students who got a correct answer for Item 4(b) were able to solve the system of 

equations with infinitely many solutions for 𝑎𝑎 = 4. Fourteen students who gave 

incorrect responses had difficulties in finding the values of 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 for a system with 

infinitely many solutions. These students did not know what procedures to follow and 

did not indicate even action conceptions. Table 4 is a summary of the results for 

systems of equations. 

Table 4 Results for items based on system of equations 

Item		 Correct	 row	

reduction	

Correct	

solution	

Incorrect	

solution	

No	response	

4(a)	 10	 3	 18	 6	

4(b)	 7	 3	 18	 6	

Only one out of the 27 students responded correctly to all the sub-questions in 

Question 4. It seems this student has mastered the algebraic manipulation involved in 
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row reduction and has also encapsulated the necessary and sufficient conditions for the 

system to have no solution and infinitely many solutions. The written response of this 

student suggests his engagement with the concept of systems of equation is at an object 

level of engagement  

Discussion  

The data revealed that the students’ problems with basic numerical fluency and 

algebraic manipulation skills hampered their performance in the matrix algebra items. 

For example in Item 3(b), 60% of the students who produced incorrect responses did so 

because of their problems with basic concepts such as finding the square roots of 

fractions. 40% of the incorrect attempts in Item 3(b) were because of algebraic 

manipulation skills such as multiplication of terms within brackets. Algebraic 

manipulation skills also emerged as a major reason for 61% of the incorrect responses 

to Item 4 where students were unable to find the correct expressions or carry out a series 

of operations on algebraic expressions. Although some of the mistakes are related to 

what [16] calls slips, others are misconceptions arising from school level mathematics. 

The non-encapsulation of previously taught concepts was a serious impediment in 

constructing further mathematics concepts. Ndlovu [14] found similar results in her 

study where students’ engagements with the concept of systems of equations were 

limited because of their poor numeracy and algebraic skills.  

The data also revealed that students had problems with notations used to 

distinguish between a matrix and the determinant of matrices, similar to findings 

reported in [6]. Although this may seem like a minor notational error, it signals a deeper 

confusion between carrying out a procedure on the object (matrix) and the object itself. 

The determinant of a matrix is a single value (or expression) while a matrix is an 𝑚𝑚×𝑛𝑛 

array of numbers. Hence students who have not developed this deeper understanding of 
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the differences between the two are more likely to interchange the notation without 

appreciating the different connotations that are conveyed. The problem with matrix 

brackets also emerged in Item 1(c) where students left out brackets and only inserted 

them in the last step. This tendency also signals a problem with distinguishing between 

the matrices whose entry values are obtained from finding the results of determinants 

and the procedure of actually finding the determinants. 

There were many instances where students completed certain procedures 

without understanding what they were doing. Only four percent of students could 

identify the condition when the solution has infinitely many solutions and no solution 

and were able to understand algebraic manipulation. Many were able to reduce the 

augmented matrix to row echelon form but they stopped at that point because they were 

unable to apply their knowledge of systems of equations to explain what values of the 

variables could cause the system to have no solutions or an infinite number of solutions.  

In addition when asked to actually solve the system for an infinite number of solutions, 

some did not proceed even though they had the necessary information. On the other 

hand in Item 4, there were five students who solved the system even though they did not 

work out correct values of 𝑎𝑎 in Item 4(b). It seems that they had learnt off the procedure 

for finding the infinite solutions and went ahead and applied it. This may have been so 

because students may have become accustomed to certain types of questions which 

appear regularly in tests and assessments in the course and they have learnt the steps 

without understanding. For these students the primary method of engaging with the 

material is by studying previous examination questions whose solutions are available. 

Developing a conceptual understanding is a secondary goal while the primary one is to 

pass the module. Dorier and Sierpinska’s work [17], Ndlovu [14] and Siyepu [16] also 

found that students often cope with the procedural aspects of the course, solving linear 
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systems and manipulating matrices but struggle to understand the crucial conceptual 

ideas underpinning them. 

APOS theory [7-9] asserts that engagement with a concept can take place at 

different levels. In this study it was clear that most students were stuck at the action 

level understanding of determinants which is characterised by procedural ways of 

working. A conceptual understanding develops as students move from seeing a concept 

as an action to having an interiorised conception at a process level. With determinants, 

there was evidence of three students having developed a process understanding; 

however most were stuck at action level conceptions. This finding concurs with [10, 14] 

who assert that students lack conceptual understanding. With respect to the notion of 

inverse, from the questions that were done, there are possibly 12 students who may be 

working at a process level or even at a higher level, but further evidence is needed 

before more definitive findings can be made. With respect to the understanding of 

systems of equations, only 1 student showed some evidence of possibly having an 

object conception, with most other students performing unevenly across the questions 

which indicate that they were working mostly at an action level which differs with [18] 

who had 29% of participants at process conception. 

Conclusion 

In this paper we analysed the written responses of 27 Zimbabwean pre-service students 

to assessment items based on the matrix algebra concepts of determinants, matrix 

inverse and solutions of systems of equations. It was found that students were at action 

conception since they were able to work out the items requiring procedural ways of 

working. Very few were operating on process and object conception for the four items. 

Students seemed to have been operating at action conception to certain types of 

problems which they then reproduced without showing evidence of deeper engagement 
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of object conception with the underlying concepts. It is a concern that some students 

revealed a lack of fluency algebraic manipulation skills as well as certain numerical 

operations and conceptual understanding which lead to schema development. This 

limited their engagement with the matrix algebra concepts. Hence for the participants to 

develop the appropriate mental structures they need structured opportunities to discover 

the underlying principles and relationships between objects in matrix algebra. It is 

therefore important for the university administrators to develop delivery plans around 

these needs of the students in a manner which allows developing of the necessary 

understandings which lead to object conception. 
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Abstract 

With continuing technological improvements, it is increasingly easy to produce 

high-quality interactive online resources to support learning of mathematics & 

statistics concepts.  Software like GeoGebra (www.geogebra.org) allows users to 

produce dynamic, interactive constructions, with relatively low technical 

demands and moderate time and resource requirements.  In this paper, we 

describe a project at the School of Mathematics and Statistics, The University of 

Melbourne, to produce a collection of interactive applets to enhance teaching in a 

range of undergraduate subjects offered by the school.  The applets target specific 

teaching and learning needs of our school and are tailored precisely to our local 

teaching and learning context.  We will give an overview of the project, and 

describe the approach taken by the project to identify teaching needs that could 

be serviced by new applets, and the design and feedback processes used to 

produce the applets. We give a preliminary survey of the outcomes of the project 

and discuss its impact on teaching and learning, both directly on the student 

experience as well as on academic staff through professional development.  We 

offer a discussion of the technical merits and drawbacks of GeoGebra as a 

technological platform for the development of interactive applets for 

undergraduate mathematics and statistics, including data on the development time 

required to produce applets using GeoGebra. 

Keywords: applets, GeoGebra, undergraduate, mathematics, statisticsIntroduction 

Applets in mathematics and statistics education 

Applets, small pieces of software which serve a specific task and run within a web 

browser, are used widely in undergraduate mathematics and statistics.  Applets can offer 

interactive, dynamic visual representations of mathematical & statistical concepts.  The 
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interactivity that applets offer can ”extend and enhance” the communicative power of 

graphical representations of mathematical concepts [1].  Applets often have a specific 

conceptual focus (for example [2, 3]), so they can be used selectively by instructors to 

support understanding of key concepts or to enhance an instructor’s ‘story-telling’ or 

educational narrative.  They are flexible, allowing use in a classroom or by students 

outside of class, and are usually easy for users to master without training or previous 

experience with their use.  Although many of these benefits are not unique to applets, 

the potential flexibility and ease of use that applets offer make them a popular choice of 

computer-based learning resource.  Research shows that computer-based tools, such as 

applets, can be effective in mathematics and statistics education [4].  Many collections 

of applets exist on the web; for instance MERLOT (www.merlot.org) or GeoGebraTube 

(www.geogebratube.org), although the resources they provide can be of varying quality. 

Applets may be built with a range of technological platforms.  Java 

(www.java.com) was the most common platform for applets through the late 1990’s and 

2000’s, and is still used widely; however, improvements in web browser technology 

mean that applets can now be built using HTML5, which run in a web browser without 

requiring any additional browser plugins or other software.  An example of an applet is 

shown in Figure 1. 

GeoGebra 

GeoGebra (www.geogebra.org) is a dynamic geometry, algebra and calculus software 

system [5]. It is open-source software and freely available to download. Development of 

GeoGebra and related research is led by a non-profit foundation, the International 

Geogebra Institute [6].  Materials produced in GeoGebra can be uploaded to the web via 

the GeoGebraTube repository (www.geogebratube.org) or embedded within another 

website such as a learning management system (LMS).  An outline of the technical 
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aspects of GeoGebra, and a discussion of the strengths and weaknesses of GeoGebra as 

a platform for applet development, is given in Section 0. 

 

 

Figure 1: Screenshot showing an applet linking confidence intervals, hypothesis 

testing and p-values. Surrounding web browser window not shown. This applet is 

accessible at http://www.melbapplets.ms.unimelb.edu.au/?portfolio=confidence-

intervals-hypothesis-testing-and-p-values  

Project: Conceptual learning with interactive applets 

Genesis of the project 

Applets have been used in the School of Mathematics and Statistics at the University of 

Melbourne, in various ways and in several subjects, for many years. However, despite a 

wealth of applets publicly available on the web, many of the applets being used were 
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not perfectly suited to the local teaching context. For instance, the notation or 

terminology used in an applet may differ from that used in lecture notes, or between one 

applet and the next; some applets contained superfluous features, or lacked features 

which would have been of use; others have technological obstacles which make their 

use difficult.  Despite the efforts of projects like MERLOT [7] to provide quality control 

for online teaching resources through peer review, it is often still difficult to find 

resources that meet a particular combination of teaching needs.  During discussions 

between the authors, it was realised that, due to technological advancement over recent 

years, it is now feasible for academics to build custom-made interactive applets, tailored 

precisely to their needs, with relatively moderate requirements of time or technical 

expertise.  As a demonstration of this, the authors produced two applets using 

GeoGebra, a software package which one of the authors had recently become 

acquainted with.  The applets were designed around demonstrations used in 

undergraduate statistics lab classes, and anecdotally showed good potential for 

enhancing conceptual understanding in early trials with students and colleagues.  The 

potential for such resources to make a notable impact on teaching and learning in the 

department for only a moderate investment of resources was recognised. 

A small amount of seed funding was obtained from the School of Mathematics 

and Statistics for further applet development. This funding allowed us to produce two 

additional statistics applets, with the development done by a graduate student research 

assistant. A larger grant of $10,000 was obtained from the University to extend the 

project to several first and second-year mathematics and statistics subjects. The main 

aim was to enhance learning by producing new applets targeting specific teaching and 

learning needs in our school which were not met by existing resources.  The applets 

would be tailored precisely to the local teaching and learning context.  An additional 
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aim of the project was to develop a pool of expertise in development and use of such 

applets, which may be drawn upon in the future by other academics in the school 

seeking to produce or use similar resources for their own needs.  A further aim, 

although more tacit, was professional development: to trigger colleagues to reflect on 

their teaching practice, by prompting them to make explicit their pedagogical goals and 

approaches during the applet design and feedback process. 

Identifying teaching needs 

Once the project was underway, areas in the school’s core undergraduate programme 

were identified where new applets could have a positive impact on teaching and 

learning.  This was done in discussion with interested teaching staff as well as drawing 

on the team members’ own experiences.  Areas were sought which were inadequately 

served by existing interactive resources, and for which the project could make a 

contribution within its resource and technical capabilities.  Such areas were identified in 

a range of subject areas, including introductory and intermediate statistics and 

probability, first-year calculus, second-year real analysis, and first-year mathematics for 

biomedical sciences. 

The areas identified were driven largely by three main motivators, which aligned 

with the motivations of the academics participating in the project. Each of the three 

motivators feeds in to the main aims of the project. This is discussed in Section 0. 

Processes: Design and feedback 

Once an area for an applet had been identified, team members would briefly survey 

existing resources to identify anything that might be pertinent. The team would produce 

draft designs for one or more applets, in consultation with the relevant academics when 

appropriate.  These designs would be implemented in GeoGebra either by a research 
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assistant or by a member of the project team (the authors of this paper). The resulting 

applet(s) would then undergo a lengthy cycle of review, feedback and refinement.  The 

applet(s) were provided to relevant academics who were encouraged to play with them, 

with particular attention to whether they met their teaching needs.  In some cases, 

academics would be prompted with specific questions, such as what terminology or 

notation should be used in the applet, what key examples they would want the applet to 

support, or what additional functionality would be needed to make effective use of the 

applet in their teaching.  Academics would provide feedback and suggestions to the 

project team, who would revise the applets accordingly. This cycle would be repeated 

several times.  A further cycle would usually be performed after the applets were used 

by staff or students in the course of teaching.  The duration of this process, from first 

discussions to finished product, was typically 2-3 months. 

The project team also ran workshops with academics to refine and test the 

applets. Two workshops were held. One focussed on statistics applets and targeted 

practicing statisticians and staff involved in teaching statistics; the other focussed on 

mathematics applets and targeted lecturers of core first and second-year mathematics 

subjects.  Each workshop had about 10 participants and ran for about 90 minutes. In the 

workshops, brief demos of selected applets were given, and then participants were 

invited to play with the applets, individually or collaboratively, and give constructive 

feedback.  These workshops prompted discussion about subtle pedagogical and design 

issues, brought to light through collaborative discussion, which were not identified in 

the previous feedback cycles.  Further revisions were made to the applets following the 

workshops. 

Several design principles informed the design and development of the applets. 

These include the use of colour coding to re-inforce semantic relationships between 
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visual elements; the use of directly manipulable user interface elements, acknowledging 

that knowledge is embodied; and the use of representations, notation and terminology 

consistent with other course materials, such as lecture notes, to ensure coherence with 

existing resources.  These principles are guided by cognitive load theory [8] and 

computer user interface research [9], and broadly align with those of similar projects 

such as [2, 3]. These will be discussed further in a future paper. 

In addition, the project also produced supporting resources including instructors’ 

notes, sample online tutorials and sample assessment items.  These are discussed further 

in Section 0. 

Project outcomes to date 

The project has produced 29 applets at time of writing1. These are available on the 

project website at http://www.melbapplets.ms.unimelb.edu.au . The applets address 

concepts from a range of subjects and levels, including introductory calculus, statistics 

and probability, analysis, and discrete mathematics.  A list of the concepts addressed by 

the applets is given in Table 5.  These applets range in complexity from simple 

demonstrations with one or two visual components to rich applets with complex 

animations and multiple representations of key concepts. Two applets were adapted 

from existing freely available resources from Geogebratube; the remainder were 

designed and built by the project. A screenshot of a typical applet is given in Figure 1. 

Table 5: Concepts addressed by applets produced by the project, grouped by 

subject area.  One applet was produced for each concept, unless indicated 

otherwise. 

                                                

1 This excludes some applets which are minor variations on other applets, and 3 applets which, 

at time of writing, are incomplete and still under development. 
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Subject	area	 Concepts	addressed	by	applets	
Calculus	(first-year	level)	 Sequences	&	series	

Inverse	of	a	function	

Parametric	curves	(2	applets)	

Continuity	

ODEs:	direction	fields	and	Euler’s	method	

Mathematical	models:	population	models	without	
harvesting	and	with	harvesting,	springs	(3	applets)	

Introductory	statistics	 Discrete	and	continuous	probability	distributions	(2	
applets)	
Confidence	intervals,	hypothesis	testing	and	p-
values	
Power	of	a	hypothesis	test	
Partitioning	of	variability	(2	applets)	
Normal	probability	plots	

Intermediate	probability	&	
statistics	(second-year	level)	

QQ	plots	
Distribution	of	order	statistics	
Maximum	likelihood	estimators	
Central	Limit	Theorem	and	Law	of	Large	Numbers	*	
Prisoners’	Paradox	*	

Real	analysis	(second-year	
level)	

Formal	ϵ-M	definition	of	convergence	of	a	
sequence	
Formal	ϵ-δ	definition	of	convergence	and	
continuity	
Differentiability	
Riemann	sums	and	integral	

Discrete	mathematics	 Difference	equations	(2	applets)	
Discrete	time	population	genetics	model	

Linear	Algebra	 Linear	transformations	of	the	plane	and	
eigenvectors	

* These applets have not yet been published publicly so links are not yet available. 

In addition to the applets, the project also produced resources to support the use 

of applets in teaching.  Instructors’ notes were produced for several applets.  The notes 

begin with a short description of the rationale for the applet, including key concepts for 

which it was designed to illustrate. This is followed by an outline of the user interface 

components of the applet. The notes typically also offer suggestions for ways that the 

applet may be used in teaching, and/or list specific examples (for instance, functions or 

combinations of parameter values) that can be used with the applet to highlight key 
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aspects of the concept(s) in question.  The examples provided have been tested in the 

applet to ensure that they work smoothly and display clearly.  For examples which 

require a function or equation to be input into the applet, the equation is provided in 

both standard mathematical notation and in GeoGebra’s input notation, so that the input 

may easily be copied-and-pasted directly into the applet.  These documents also note 

any technical or mathematical details which are relevant to the teaching of the concept 

but may not be outwardly obvious. Such details may include, for example, any 

assumptions being made in the mathematical model underlying the applet.  The project 

team felt it important to document such details to enable instructors, when discussing or 

demonstrating the applet to students, to present a mathematically correct narrative that 

avoids conveying subtle misconceptions.  Overall, the instructors’ notes are intended 

assist teaching staff by reducing technical or cognitive barriers to effective use of the 

applet. 

The project also produced sample online tutorials associated with two of the 

applets. These take the form of a web page with a sequence of questions guiding 

students through a learning activity using an applet.  These were produced for two 

statistics applets; statistics was targeted for the tutorials because the statistics subjects 

offered by our school include computer lab classes in which the online tutorial exercises 

could potentially be embedded.  Further improvement of the tutorials, informed by 

cognitive learning theory as in [10] and cognitive theory of multimedia learning [11], 

also remains for the future.  The project team is in the process of producing sample 

assessment tasks, including assignment and online quiz questions, which make use of 

the applets. These will be published to the project website after they have been trialled 

and refined. 
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It was not our aim to produce supporting resources for every applet in the 

collection; rather, it was intended to produce a few exemplar resources as part of a 

showcase, which may act as models for further resources produced in the future. 

Integration and evaluation 

The design and development phase of the project, during which new applets are 

produced, is now nearing completion, with most applets complete or approaching the 

end of the feedback cycle.  However, work is continuing to integrate the applets and 

other resources into subjects offered in the school.  Some applets will be used in 

teaching for the first time during semester 2, 2015.  During the next phase of the project 

we will explore how to further integrate applets into the existing teaching models used 

in the school, which include tutorials, computer labs, individual consultations, and 

various forms of assessment, as well as lectures.  In some cases it may be desirable to 

adjust the teaching model to take full benefit of the learning opportunities that the 

applets offer. 

The project also includes an evaluation phase.  During the evaluation phase, data 

will be collected to investigate the project’s impact on student learning, as well as on 

teaching staff in the school.  Preliminary evaluation has already been conducted in 4 

subjects which made use of the project’s applets.  This was done using data from online 

student surveys, as well as from analytics data and from assessment, and results have 

been positive.   We briefly report here on the evaluation results from one subject.  In 

semester 2, 2014, a collection of applets were used in a mathematics subject for first-

year biomedicine students. The applets related to difference equations2,3, discrete-time 
                                                

2 http://www.melbapplets.ms.unimelb.edu.au/?portfolio=iterating-a-difference-equation  

3 http://www.melbapplets.ms.unimelb.edu.au/?portfolio=cobwebbing  
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models of population genetics4, and first-order ODEs5.  The applets were used in 

lectures, and provided for students to access outside of class.  Students were required to 

use one or more of the applets in assignments during the semester. Enrolment in the 

subject was 183 students, mostly first-year, all enrolled in a Bachelor of Biomedicine. 

An online survey was administered to the students over 5 days during weeks 7-8 of 

semester, after the applets had been used in lectures and assignments. The survey 

contained 6 questions, of which we will discuss only two. These are shown, along with 

results, in Table 6 below. Thirty-eight students responded to the survey, a return rate of 

20.8%. 

The first question asked students to rate their agreement with the statement “I 

found that the applets improved my understanding of concepts from this subject”. The 

response options were Strongly agree, Agree, Unable to judge, Disagree, Strongly 

disagree. Of the 38 respondents, 34 agreed or strongly agreed with the statement; the 

remaining 4 chose Unable to judge. No respondents disagreed or strongly disagreed 

with the statement.  This question was intended to assess students’ perceptions of the 

impact of the applets on their learning. This strong response indicates that students do 

indeed believe the applets to be beneficial for their learning. 

The fourth question asked “How did you use applets in this subject? Please 

select all that apply.”  The response options, and percentage of respondents that selected 

that option, are shown in Table 6 below.  Thirty-seven percent of respondents answered 

that they used applets to help understand lecture content; 68% used applets to help 

answer exercises, and 97% (all but one) used applets as part of an assignment. These 

responses appear to show a preference towards task-oriented use of applets: students 
                                                

4 http://www.melbapplets.ms.unimelb.edu.au/?portfolio=population-genetics-by-fhw-model  

5 http://www.melbapplets.ms.unimelb.edu.au/?portfolio=exploring-an-ode  
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favour applet use to help complete specific learning tasks, rather than to assist with a 

general understanding of concepts.  However, in this subject some assignment questions 

and non-assessed practice exercises explicitly direct students to use applets, which 

likely contributed to the high rates for the task-oriented responses.  Whether the 

apparent preference for task-oriented use is genuine or a consequence of the explicit 

directions given in assignments and exercises may be answered by further evaluation.  

The remaining questions on the survey addressed technical aspects such as ease-of-use 

or were open-response. We will not discuss them here. 

Table 6: Select survey questions for first-year biomedical mathematics class and 

summary of results. 

Q1: I found that the applets improved my understanding of concepts from this subject. 
  Strongly agree Agree Unable to judge Disagree Strongly disagree   
Number 13 21 4 0 0   
% 34% 55% 11% 0% 0%   
Q4: How did you use applets in this subject? Please select all that apply.   
  Number % Response       
  14 37% I used applets to help me understand content from lectures 
  26 68% I used applets to help me answer exercise sheet questions 
  37 97% I used applets as part of an assignment   
  17 45% When I used applets, I was working/studying on my own 
  5 13% When I used applets, I was working/studying with friends 
  0 0% I did not use applets in this subject   
  0 0% Other       
Note: Respondents could choose multiple answers in question 4.  

Total responses: 38 
These results indicate that students perceive the applets as beneficial for their 

learning.  Preliminary evaluation results from other subjects (not discussed here) paint a 

similar picture. More work is required before reaching definite conclusions however, in 

particular regarding student motivations for applet use.  The evaluation will also include 

interviews with academic staff, which will explore the impact of the project on teaching 

practice in the school, including its role in professional development. 

Early impacts 

So far, the applets produced by the project have been used in 8 subjects over 3 
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semesters, potentially reaching an estimated 5000 enrolments and over 3000 distinct 

students. The authors have used the applets in lectures, tutorials, computer labs and one-

on-one consultations and have observed first-hand the power of the applets to 

strengthen understanding of concepts, clear up misconceptions, and support students to 

see relationships between concepts and to reflect on their learning.  An evaluation of the 

impact on student experience is ongoing. The impact of the project has also been felt 

more widely in the school.  Over 20 academic staff were involved in the development 

and feedback processes during the project, including teaching specialist staff, 

research/teaching academics, consulting statisticians and casual tutors.  By involving 

many academic staff from the school in the development and feedback processes, the 

project helped foster discussion and collaboration between staff, some of whom would 

not otherwise have been involved in the development of teaching resources.  By 

actively seeking input and feedback from academics, the project prompted academics to 

reflect on their teaching practice.  In this way, the project helped encourage collegiality 

and reflective practice in a non-confrontational and respectful way.  We have only 

anecdotal evidence for these impacts so far, but this will be the focus of further 

evaluation in the future. 

A framework for analysing applet impact 

During the first phase of the project, the project team met with academics to identify 

areas in their undergraduate teaching where new applets might be of benefit.  The 

involvement of individual academics in the project, and the development of ensuing 

applets, were driven largely by three (overlapping) motivators: 

1. Pedagogical impetus. The original motivation for the project was to develop 

powerful interactive visuals for mathematical & statistical concepts. The visuals 

are tailored to a specific pedagogy (while providing enough flexibility to adapt 
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to other pedagogies if needed), with the aim of strengthening links between 

internal visual images and mathematical formalism. 

2. Reduce technological obstacles.  Some lecturers had used existing resources 

(typically Java-based applets or Excel spreadsheets) in their teaching for many 

years.  These resources generally served the pedagogical requirements 

adequately, but had in recent years become increasingly difficult to use due to 

changing software configurations – in particular, stricter browser security 

settings, which require users to click through several security warnings or 

modify browser configuration before the software would load.  In these cases, 

the lecturers wanted similar applets that did not require Java or other additional 

software. 

3. Enhance subject delivery.  In some subjects, opportunities were identified where 

interactive applets could enhance existing teaching practice, for instance by 

replacing a series of hand-drawn diagrams used by lecturers with a single applet. 

Lecturers typically wanted to enhance engagement and interactivity in lectures 

using media beyond the conventional lecture slides or document camera. 

Two main aims of the project were, ultimately, to improve student learning, and 

to provide professional development by prompting reflection amongst teaching 

academics.  We posit that each of the three motivators above feeds into these main aims.  

This is represented schematically in Figure 2.  For example, constructing pedagogically 

tailored visual aids helps students link symbolic and visual representations of concepts, 

feeding in to improved conceptual understanding.  Designing such applets requires 

teachers to reflect deeply about the concepts in question and the narratives they use to 

explain them, a form of (informal) professional development. Removing technological 

obstacles reduces barriers to student engagement, which feeds into improved learning.  
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Designing replacements for old applets necessitates an examination of the role that the 

applets were playing, leading to reflection on teaching practice.  Enhancing subject 

delivery leads to improved engagement and learning; seeking feedback on a new 

interactive resource prompts staff to experiment with new examples or narrative 

sequences.  Investigating these links will be a task for the ongoing evaluation phase of 

the project. 

 

Figure 2: Emerging framework for evaluation of project impact 

Technology: GeoGebra as a platform for interactive resource development 

In this section we will discuss GeoGebra as a technological platform for applet 

development.  We will outline some technical aspects which informed the choice of 

GeoGebra as a technological platform for our applet development, and discuss some 

strengths and weaknesses of GeoGebra that we have encountered for this kind of 

project. We give some data on the development time required to produce applets in 

GeoGebra, which may be of use to those planning similar projects or for comparison of 

the relative ease of development of different technological platforms. 

Reduce	technical	
obstacles	

Enhance	subject	
delivery	

Pedagogical	
impetus	

Student	learning	

Academics’	
professional	development	
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GeoGebra is an open-source mathematical software package, freely available at 

www.geogebra.org . It includes dynamic geometry, calculus, symbolic algebra and 

statistics functionality.  GeoGebra can be used in several ways, including as a 

standalone desktop application, as a tablet app, as a browser-based web app, or 

embedded as an applet into a webpage.  The GeoGebra project also provide a 

repository, GeoGebraTube, to which users can upload and share GeoGebra worksheets. 

Development of our applets was done in the desktop version of GeoGebra, and then 

uploaded to GeoGebraTube for deployment to students.   

GeoGebra applets embedded in a web site or on GeoGebraTube can be run in 

two modes: HTML5 mode, which requires no additional software or browser plugins, 

but will not work on very old web browsers, or Java mode, which requires that Java 

software be installed on the user’s computer but can work a wider range of browsers, 

providing that the Java plugin is installed and appropriately configured. By default, the 

HTML5 version is used by GeoGebraTube but it is possible to specify that the Java 

version should be used instead. 

Low technological barriers 

A significant strength of GeoGebra, from our perspective, is its low technological 

barriers to use.  Once uploaded to the web as HTML5, a GeoGebra applet usually runs 

entirely within a web browser, without requiring any additional software, plugins or 

configuration.  This is in contrast to Java applets, which require the Java software 

package and browser plugin to be installed, and can require the user to click through 

several security warnings before the applet will load.  To use a Java applet on their own 

PC, a student must first download and install Java, and keep it up-to-date with updates if 

it is to continue to work reliably.  Due to the wide variety of devices and configurations, 

and time commitment, teaching staff typically cannot provide technical support with 



 

 
126 

this process so students are ‘on their own’ with installing and configuring the software.  

We have found that, even on University-maintained PCs in computer labs, students 

must complete additional configuration steps (such as clicking through a security 

warning) before a Java applet will load.  Moreover, guidance about this process must be 

provided by teaching staff if applet use is a required part of the course.  A major 

strength of GeoGebra is that it removes these potential technological barriers from 

students; to access a GeoGebra applet, a student typically needs only to follow a web 

link, after which the applet will load and execute automatically a few seconds later. 

Moreover, being based on HTML5 standards, the applets ‘just work’ on a wide range of 

devices (eg. desktop PC, mobile tablet) and browsers (eg, Firefox, Safari). This greatly 

reduces the technological issues experienced by students and staff, and the effort 

expended by teaching staff providing technical support.  

Ease of development 

From a developer’s perspective, we found building applets in GeoGebra to be very fast.  

Similarly to other dynamic geometry systems, GeoGebra operates by construction: each 

mathematical object or visual element is constructed by specifying its relationship with 

previously defined objects. If an object is changed, for instance as a result of a user 

interaction, then all objects descended from it are automatically updated to reflect the 

change.  Hence the work required to construct a mathematical applet using GeoGebra is 

close to the theoretical minimum: to fully specify an applet, the developer must, at some 

point, define each object in the applet and their relationship to other objects.  Building 

‘by construction’ in GeoGebra means that these definitions are, in many cases, all that is 

required; once an object is defined, GeoGebra takes care of rendering, updates and user 

interaction with the object automatically. 



 

 
127 

To quantify the development time required for such applets, we can look at the 

time spent by research assistants developing applets for the project.  Of the applets 

produced by the project, 10 were developed primarily by casual research assistants 

employed by the project (8 of which are fully complete, 1 has minor modifications 

pending, and 1 has substantial development work remaining). The research assistants 

had no prior experience working with GeoGebra before taking on this work, and were 

required to learn the system as they went. The 10 applets produced by research 

assistants, and the time taken by the research assistants, are given in Table 7. The table 

also gives an indication of the technical complexity of the applet. The technical 

complexity is mainly determined by the number of elements in the construction and the 

presence or absence of multi-stage animations.  The average development time required 

for these applets was 18.2 hours. The development work for each applet was typically 

spread over 2-4 weeks.  The times given in Table 7 are the times spent implementing 

the applet in GeoGebra; they do not include time spent in the design or feedback phases 

(which in some cases drew on hands-on experience with students going back years), but 

they do include time spent implementing changes as a result of feedback.  
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Table 7: Development times for applets developed by research assistants. 

Applet	
Technical	
complexity	

Research	
assistant	
development	
time	(hours)	

Team	
member	
development	
time	
estimate	
(hours)	

Total		
development		
time	(hours)	

Partitioning	of	variability	in	
ANOVA	 High	 25	 4	 29	
Partitioning	of	variability	in	
regression	 High	 18	 4	 22	
Maximum	likelihood	estimators	 Low	 16	 1	 17	
Distribution	of	order	statistics	 Low	 10	 1	 11	
Discrete	and	continuous	
distributions	 Low	 9	 1	 10	
Prisoner's	Paradox	 Medium	 15	 2	 17	
QQ	plots	 Medium	 17	 2	 19	
Spring	with	forced	vibrations	 High	 18	 4	 22	
Central	Limit	Theorem	and	Law	of	
Large	Numbers	 Low	 3	 1*	 4	
Random	variables	 Very	high	 25	 6*	 31	

		 Average	 15.6	 2.6	 18.2	

*At time of writing these applets are still under development so these times are 

forecasts. 

For these applets, initial development was done by a research assistant under 

guidance from the project team. During the feedback cycle, minor changes or 

corrections were usually made directly by the team members. Team members did not 

formally record the hours spent on these tasks so the times given for team members are 

estimates.  In some cases, technical issues arose during the development of low or 

medium complexity applets (as discussed in sections 0 and 0) which increased the 

development time required. In other cases, changes were made to the design while 

development was underway; the consequent modifications also increased development 

time. 
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Community support 

The documentation provided by the GeoGebra project is generally reliable and 

comprehensive. Moreover, the large pool of resources that are available on 

GeoGebraTube or elsewhere on the web provide many sources of ideas or techniques to 

draw from. Finally, the forums are a good source of expertise or help for technical 

issues; typically, our posts would be answered within a day with useful suggestions for 

resolving problems. 

Poor performance 

The main obstacle that we encountered with GeoGebra as a platform for applet 

development was poor responsiveness of certain applets when running in HTML mode.  

In some cases, animations would be jerky or a noticeable lag would occur between a 

user interaction (for instance, clicking a button) and the response appearing on screen. 

This was a problem mainly for larger applets with many components, extensive 

computational requirements, or complex animations, and generally only when the applet 

was displayed in HTML mode.  Performance varied with hardware and software 

configuration.  Sometimes, performance could be improved significantly by redesigning 

aspects of the construction to be more efficient. In one case, where the performance in 

HTML mode was unacceptable, we elected to use the Java version of the applet by 

default, as the Java version generally has better performance, but at the cost of 

potentially higher technical barriers such as Java security warnings, update notifications 

or plugin problems. 

Immaturity of software 

Over the course of our project we ran into several bugs or other software issues with 

GeoGebra, for instance cases where a function does not work as expected, or 
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constructions which cause a crash. In a small number of cases, an applet had to be 

modified or redesigned to avoid bugs or technical limitations.  However, the GeoGebra 

developers were quick to respond to reports of such issues on the forum, often providing 

a fix within a day or two.  We also note that GeoGebra’s library of built-in 

mathematical functions, although sufficient for most needs in introductory calculus and 

statistics, is not as extensive as that of more specialised mathematical software such as 

Mathematica or Maple, which may be a limitation for more advanced applications. 

Further work 

Integration of the new applets into the teaching activities of the school is continuing.  

Several of the applets are being used in teaching for the first time in semester 2, 2015, 

so a full picture of the impact of the project may not be seen until 2016.  One particular 

challenge is to explore how to successfully integrate online applet use into interactive 

‘whiteboard’ tutorial classes.[12] Applets have many attributes that potentially 

encourage interaction, groupwork and creativity, key features of the whiteboard tutorial 

style, but it is not clear to us how to leverage these aspects in a way that is not 

disruptive to the active work taking place at the whiteboards, and does not disadvantage 

students who did not bring a suitable mobile device to the tutorial. 

There are several avenues to investigate further in the project evaluation. 

Additional evaluation is required of the supporting resources (instructors’ notes and 

online tutorials).  Do the resources provide the kind of support needed by teaching staff?  

Evaluation of the impact of the project on both student learning and staff professional 

development will also continue, guided by the framework from Section 0, which in turn 

may lead to further refinement of the framework. 
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Conclusion 

We have described a project to develop interactive applets targeting specific teaching 

and learning needs in our school’s undergraduate teaching.  Over 20 applets were 

produced by the project, covering a range of subjects and concepts.  An iterative, 

consultative approach was taken to design the applets, with repeated cycles of feedback 

between the project team and relevant academics.  This approach led to applets which 

were highly tailored to our local teaching and learning context, as well as fostering 

collaboration and discussion between a range of staff, and prompting academics to 

reflect on their teaching practice.  Hence the impact of the project extended beyond the 

immediate utility of the applets themselves for teaching and learning, by encouraging 

professional development and reflective practice amongst academics.  Further 

assessment of this impact is a focus for future evaluation.  Preliminary evaluation with 

students shows that students are generally favourable towards the applets and feel that 

the applets have a positive impact on learning. 

The software used by the project, GeoGebra, was found to allow very rapid 

development of applets, without requiring programmers or other specialist skills.  The 

resulting applets also present low technical barriers to use by students and staff.  Despite 

occasional limitations or shortcomings with GeoGebra, overall we found it to be a very 

good technological platform for this kind of project. 
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